Electrodeposition of Cu into a Highly Porous Ni/YSZ Cermet
Files
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
The electrochemical deposition of Cu into 0.12 cm and 60 µm thick, highly porous 65 vol % Ni/yttria-stabilized zirconia (YSZ) cermets was investigated. An electrochemical cell in which the electrolyte solution was allowed to flow through a porous Ni/YSZ substrate was used to eliminate mass-transfer limitations and to determine the conditions for which the potential drop in the electrolyte solution was minimized and a uniform Cu layer was produced throughout the porous substrate. The conditions determined from these experiments were then used to electrodeposit Cu throughout a thin, porous Ni–YSZ cermet anode layer on a solid oxide fuel cell (SOFC) using a standard nonflow-through setup. This SOFC was found to exhibit stable operation while using methane as the fuel.