Stochastic Convex Optimization With Bandit Feedback
Penn collection
Degree type
Discipline
Subject
bandit optimization
ellipsoid method
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
This paper addresses the problem of minimizing a convex, Lipschitz function f over a convex, compact set X under a stochastic bandit (i.e., noisy zeroth-order) feedback model. In this model, the algorithm is allowed to observe noisy realizations of the function value f(x) at any query point x ∈ X. The quantity of interest is the regret of the algorithm, which is the sum of the function values at algorithm's query points minus the optimal function value. We demonstrate a generalization of the ellipsoid algorithm that incurs O(poly(d) √T) regret. Since any algorithm has regret at least Ω(√T) on this problem, our algorithm is optimal in terms of the scaling with T.