Magnetization Measurements of Antiferromagnetic Domains in Sr2Cu3O4Cl2
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
The Cu3O4 layer in Sr2Cu3O4Cl2 is a variant of the square CuO2 lattice of the high-temperature superconductors, in which the center of every second plaquette contains an extra Cu2+ ion. Whereas the ordering of the spins in the ground-state and the spin-wave excitations of this frustrated spin system are both well understood, we find peculiar behavior resulting from antiferromagnetic domain walls. Pseudodipolar coupling between the two sets of Cu2+ ions results in a ferromagnetic moment, the direction of which reflects the direction of the antiferromagnetic staggered moment, allowing us to probe the antiferromagnetic domain structure. After an excursion to the high fields (>1 T), as the field is lowered, we observe the growth of domains with ferromagnetic moment perpendicular to the field. This gives rise to a finite domain wall susceptibility at small fields, which diverges near 100 K, indicating a phase transition. We also find that the shape of the sample influences the domain-wall behavior.