Phase imaging and the lever-sample tilt angle in dynamic atomic force microscopy

Loading...
Thumbnail Image
Penn collection
Departmental Papers (MEAM)
Degree type
Discipline
Subject
silicon
elemental semiconductors
atomic force microscopy
damping
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
D'Amato, Matthew J
Marcus, Matthew S
Eriksson, Mark A
Contributor
Abstract

The phase shift in amplitude-controlled dynamic atomic force microscopy (AFM) is shown to depend on the cantilever-sample tilt angle. For a silicon sample and tip the phase shift changes by nearly 15º for a change in tilt angle of 15º. This contribution to the phase results from the oscillating tip's motion parallel to the surface, which contributes to the overall energy dissipation. It occurs even when the measurements are carried out in the attractive regime. An off-axis dynamic AFM model incorporating van der Waals attraction and a thin viscous damping layer near the surface successfully describes the observed phase shifts. This effect must be considered to interpret phase images quantitatively. © 2004 American Institute of Physics.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2004-11-15
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright (2004) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. Reprinted in Applied Physics Letters, Volume 85, Issue 20, November 2004, pages 4738-4740. NOTE: At the time of publication, author Robert W. Carpick was affiliated with the University of Wisconsin. Currently (June 2007), he is a faculty member in the Department of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania. Publisher URL: http://dx.doi.org/10.1063/1.1812839
Recommended citation
Collection