Hemodynamic Regulation of Inflammation at the Endothelial-Neutrophil Interface

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CBE)
Degree type
Discipline
Subject
shear stress
inflammation
glucucorticoid
neutrophils
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Ji, Julie Y
Jing, Huiyan
Contributor
Abstract

Arterial shear stress can regulate endothelial phenotype. The potential for anti-inflammatory effects of shear stress on TNFα-activated endothelium was tested in assays of cytokine expression and neutrophil adhesion. In cultured human aortic endothelial cells (HAEC), arterial shear stress of 10 dyne/cm2 blocked by > 80% the induction by 5 ng/ml TNFα of interleukin-8 (IL-8) and IL-6 secretion (50% and 90% reduction, respectively, in the presence of nitric oxide synthase antagonism with 200 μM nitro-L-arginine methylester, L-NAME). Exposure of TNFα-stimulated HAEC to arterial shear stress for 5 hr also reduced by 60% (P &#; 0.001) the conversion of neutrophil rolling to firm arrest in a venous flow assay conducted at 1 dyne/cm2. Also, neutrophil rolling lengths at 1 dyne/cm2 were longer when TNFα-stimulated HAEC were presheared for 5 hr at arterial stresses. In experiments with a synthetic promoter that provides luciferase induction to detect cis interactions of glucocorticoid receptor (GR) and NFκB, shear stress caused a marked 40-fold induction of luciferase in TNFα-treated cells, suggesting a role for GR pathways in the anti-inflammatory actions of fluid shear stress. Hemodynamic force exerts anti-inflammatory effects on cytokine activated endothelium by attenuation of cytokine expression and neutrophil firm arrest.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2008-04-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Published in Annals of Biomedical Engineering, Volume 36, Issue 4, April 2008, pages 586-595. Publisher URL: http://dx.doi.org/10.1007/s10439-008-9465-4
Recommended citation
Collection