Accuracy of Diffusing-Wave Spectroscopy Theories

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

Random walk computer simulations are reported for the electric field autocorrelation of photons transmitted through multiple-scattering slabs. The results are used as a benchmark for judging the accuracy of competing theories of diffusing-wave spectroscopy (DWS), and also for distinguishing between errors introduced from the approximation of diffusive photon transport and from the continuum approximation that the total square wave-vector transfer of a transmitted photon is proportional to its path length in the material. An important conclusion is that these errors partially cancel, giving accuracies on the order of a few percent for typical experimental situations. Detailed comparisons are made as a function of optical thickness, boundary reflectivity, as well as scattering anisotropy; guidelines are generated for optimizing the analysis of actual DWS data in terms of the dynamics of individual scattering sites.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1995-04-01
Journal title
Physical Review E
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
At the time of publication, author Douglas J. Durian was affiliated with University of California, Los Angeles. Currently, he is a faculty member at the Physics Department at the University of Pennsylvania.
Recommended citation
Collection