Kong, Fanxin

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Joint Rate Control and Demand Balancing for Electric Vehicle Charging
    (2018-04-01) Kong, Fanxin; Lee, Insup; Liu, Xue
    Charging stations have become indispensable infrastructure to support the rapid proliferation of electric vehicles (EVs). The operational scheme of charging stations is crucial to satisfy the stability of the power grid and the quality of service (QoS) to EV users. Most existing schemes target either of the two major operations: charging rate control and demand balancing. This partial focus overlooks the coupling relation between the two operations and thus causes the degradation on the grid stability or customer QoS. A thoughtful scheme should manage both operations together. A big challenge to design such a scheme is the aggregated uncertainty caused by their coupling relation. This uncertainty accumulates from three aspects: the renewable generators co-located with charging stations, the power load of other (or non-EV) consumers, and the charging demand arriving in the future. To handle this aggregated uncertainty, we propose a stochastic optimization based operational scheme. The scheme jointly manages charging rate control and demand balancing to satisfy both the grid stability and user QoS. Further, our scheme consists of two algorithms that we design for managing the two operations respectively. An appealing feature of our algorithms is that they have robust performance guarantees in terms of the prediction errors on these three aspects. Simulation results demonstrate the efficacy of the proposed operational scheme and also validate our theoretical results.
  • Publication
    Cyber-Physical System Checkpointing and Recovery
    (2018-04-01) Kong, Fanxin; Xu, Meng; Weimer, James; Sokolsky, Oleg; Lee, Insup
    Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study.