Bellamy, Scarlett
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 2 of 2
Publication Overestimates of Survival After HAART: Implications for Global Scale-Up Efforts(2008-03-05) Bisson, Gregory P; Gross, Robert; Bellamy, Scarlett; Gaolathe, Tendani; Friedman, Harvey M; Rollins, Caitlin; Frank, Ian; Mogorosi, Mpho; Avalos, Ava; Dickinson, Diana; Ndwapi, NdwapiBackground Monitoring the effectiveness of global antiretroviral therapy scale-up efforts in resource-limited settings is a global health priority, but is complicated by high rates of losses to follow-up after treatment initiation. Determining definitive outcomes of these lost patients, and the effects of losses to follow-up on estimates of survival and risk factors for death after HAART, are key to monitoring the effectiveness of global HAART scale-up efforts. Methodology/Principal Findings A cohort study comparing clinical outcomes and risk factors for death after HAART initiation as reported before and after tracing of patients lost to follow-up was conducted in Botswana's National Antiretroviral Therapy Program. 410 HIV-infected adults consecutively presenting for HAART were evaluated. The main outcome measures were death or loss to follow-up within the first year after HAART initiation. Of 68 patients initially categorized as lost, over half (58.8%) were confirmed dead after tracing. Patient tracing resulted in reporting of significantly lower survival rates when death was used as the outcome and losses to follow-up were censored [1-year Kaplan Meier survival estimate 0.92 (95% confidence interval, 0.88–0.94 before tracing and 0.83 (95% confidence interval, 0.79–0.86) after tracing, log rank P<0.001]. In addition, a significantly increased risk of death after HAART among men [adjusted hazard ratio 1.74 (95% confidence interval, 1.05–2.87)] would have been missed had patients not been traced [adjusted hazard ratio 1.41 (95% confidence interval, 0.65–3.05)]. Conclusions/Significance Due to high rates of death among patients lost to follow-up after HAART, survival rates may be inaccurate and important risk factors for death may be missed if patients are not actively traced. Patient tracing and uniform reporting of outcomes after HAART are needed to enable accurate monitoring of global HAART scale-up efforts.Publication Pharmacy Refill Adherence Compared With CD4 Count Changes for Monitoring HIV-Infected Adults on Antiretroviral Therapy(2008-05-20) Bisson, Gregory P; Gross, Robert; Bellamy, Scarlett; Chittams, Jess; Frank, Ian; Hislop, Michael; Maartens, Gary; Nachega, Jean BBackground World Health Organization (WHO) guidelines for monitoring HIV-infected individuals taking combination antiretroviral therapy (cART) in resource-limited settings recommend using CD4+ T cell (CD4) count changes to monitor treatment effectiveness. In practice, however, falling CD4 counts are a consequence, rather than a cause, of virologic failure. Adherence lapses precede virologic failure and, unlike CD4 counts, data on adherence are immediately available to all clinics dispensing cART. However, the accuracy of adherence assessments for predicting future or detecting current virologic failure has not been determined. The goal of this study therefore was to determine the accuracy of adherence assessments for predicting and detecting virologic failure and to compare the accuracy of adherence-based monitoring approaches with approaches monitoring CD4 count changes. Methodology and Findings We conducted an observational cohort study among 1,982 of 4,984 (40%) HIV-infected adults initiating non-nucleoside reverse transcriptase inhibitor-based cART in the Aid for AIDS Disease Management Program, which serves nine countries in southern Africa. Pharmacy refill adherence was calculated as the number of months of cART claims submitted divided by the number of complete months between cART initiation and the last refill prior to the endpoint of interest, expressed as a percentage. The main outcome measure was virologic failure defined as a viral load > 1,000 copies/ml (1) at an initial assessment either 6 or 12 mo after cART initiation and (2) after a previous undetectable (i.e., < 400 copies/ml) viral load (breakthrough viremia). Adherence levels outperformed CD4 count changes when used to detect current virologic failure in the first year after cART initiation (area under the receiver operating characteristic [ROC] curves [AUC] were 0.79 and 0.68 [difference = 0.11; 95% CI 0.06 to 0.16; χ2 = 20.1] respectively at 6 mo, and 0.85 and 0.75 [difference = 0.10; 95% CI 0.05 to 0.14; χ2 = 20.2] respectively at 12 mo; p < 0.001 for both comparisons). When used to detect current breakthrough viremia, adherence and CD4 counts were equally accurate (AUCs of 0.68 versus 0.67, respectively [difference = 0.01; 95% CI −0.06 to 0.07]; χ2 = 0.1, p > 0.5). In addition, adherence levels assessed 3 mo prior to viral load assessments were as accurate for virologic failure occurring approximately 3 mo later as were CD4 count changes calculated from cART initiation to the actual time of the viral load assessments, indicating the potential utility of adherence assessments for predicting future, rather than simply detecting current, virologic failure. Moreover, combinations of CD4 count and adherence data appeared useful in identifying patients at very low risk of virologic failure. Conclusions Pharmacy refill adherence assessments were as accurate as CD4 counts for detecting current virologic failure in this cohort of patients on cART and have the potential to predict virologic failure before it occurs. Approaches to cART scale-up in resource-limited settings should include an adherence-based monitoring approach.