Jang, Sooyong
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 2 of 2
Publication Improving Classifier Confidence using Lossy Label-Invariant Transformations(2021-04-01) Jang, Sooyong; Lee, Insup; Weimer, JamesProviding reliable model uncertainty estimates is imperative to enabling robust decision making by autonomous agents and humans alike. While recently there have been significant advances in confidence calibration for trained models, examples with poor calibration persist in most calibrated models. Consequently, multiple techniques have been proposed that leverage label-invariant transformations of the input (i.e., an input manifold) to improve worst-case confidence calibration. However, manifold-based confidence calibration techniques generally do not scale and/or require expensive retraining when applied to models with large input spaces (e.g., ImageNet). In this paper, we present the recursive lossy label-invariant calibration (ReCal) technique that leverages label-invariant transformations of the input that induce a loss of discriminatory information to recursively group (and calibrate) inputs – without requiring model retraining. We show that ReCal outperforms other calibration methods on multiple datasets, especially, on large-scale datasets such as ImageNet.Publication Characterizing Glycemic Control and Sleep in Adults with Long-Standing Type 1 Diabetes and Hypoglycemia Unawareness Initiating Hybrid Closed Loop Insulin Delivery(2021-02-01) Kohl Malone, Susan; Peleckis, Amy J.; Jang, Sooyong; Grunin, Laura; Weimer, James; Yu, Gary; Lee, Insup; Rickels, Michael R.; Goel, NamniNocturnal hypoglycemia is life threatening for individuals with type 1 diabetes (T1D) due to loss of hypoglycemia symptom recognition (hypoglycemia unawareness) and impaired glucose counter regulation. These individuals also show disturbed sleep, which may result from glycemic dysregulation. Whether use of a hybrid closed loop (HCL) insulin delivery system with integrated continuous glucose monitoring (CGM) designed for improving glycemic control, relates to better sleep across time in this population remains unknown. The purpose of this study was to describe long-term changes in glycemic control and objective sleep after initiating hybrid closed loop (HCL) insulin delivery in adults with type 1 diabetes and hypoglycemia unawareness. To accomplish this, six adults (median age = 58 y) participated in an 18-month ongoing trial assessing HCL effectiveness. Glycemic control and sleep were measured using continuous glucose monitoring and wrist accelerometers every 3 months. Paired sample t-tests and Cohen’s d effect sizes modeled glycemic and sleep changes and the magnitude of these changes from baseline to 9 months. Reduced hypoglycemia (d = 0:47‐0:79), reduced basal insulin requirements (d = 0:48), and a smaller glucose coefficient of variation (d = 0:47) occurred with medium-large effect sizes from baseline to 9 months. Hypoglycemia awareness improved from baseline to 6 months with medium-large effect sizes (Clarke score (d = 0:60), lability index (d = 0:50), HYPO score (d = 1:06)). Shorter sleep onset latency (d = 1:53; p < 0:01), shorter sleep duration (d = 0:79), fewer total activity counts (d = 1:32), shorter average awakening length (d = 0:46), and delays in sleep onset (d = 1:06) and sleep midpoint (d = 0:72) occurred with medium-large effect sizes from baseline to 9 months. HCL led to clinically significant reductions in hypoglycemia and improved hypoglycemia awareness. Sleep showed a delayed onset, reduced awakening length and onset latency, and maintenance of high sleep efficiency after initiating HCL. Our findings add to the limited evidence on the relationships between diabetes therapeutic technologies and sleep health. This trial is registered with ClinicalTrials.gov (NCT03215914).