Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Chemical and Biomolecular Engineering

First Advisor

Raymond J. Gorte

Second Advisor

John M. Vohs


While Ni/YSZ cermets have been used successfully in SOFCs, they also have several limitations, thus motivating the use of highly conductive ceramics to replace the Ni components in SOFC anodes. Ceramic electrodes are promising for use in SOFC anodes because they are expected to be less susceptible to sintering and coking, be redox stable, and be more tolerant of impurities like sulfur. In this thesis, for catalytic studies, the infiltration procedure has been used to form composites which have greatly simplified the search for the best ceramics for anode applications.

In the development of ceramic fuel electrodes for SOFC, high performance can only be achieved when a transition metal catalyst is added. Because of the high operating temperatures, deactivation of the metal catalyst by sintering and/or coking is a severe problem. In this thesis, two approaches aimed at mitigating metal catalyst deactivation which was achieved by: 1) designing a catalyst that is resistant to coking and sintering and 2) developing a new method for catalyst deposition, will be presented.

The first approach involved synthesizing a self-regenerating, "smart" catalyst, in which Co, Cu, or Ni were inserted into the B-site of a perovskite oxide under oxidizing conditions and then brought back to the surface under reducing conditions. This restores lost surface area of sintered metal particles through an oxidation/reduction cycle. Results will be shown for each of the metals, as well as for Cu-Co mixed metal systems, which are found to exhibit good tolerance to carbon deposition and interesting catalytic properties.

The second strategy involves depositing novel Pd@CeO2 core-shell nanostructure catalysts onto a substrate surface which had been chemically modified to anchor the nanoparticles. The catalyst deposited onto the chemically modified, hydrophobic surface is shown to be uniform and well dispersed, and exhibit excellent thermal stability to temperatures as high as 1373 K. Similar metal catalyst deposition method was also employed to access their suitability for use in SOFC anodes.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."