Sodium Hydrogen Exchanger 1 Enhances Antitumor Activity Of Nk-92 Natural Killer Cells

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Cell & Molecular Biology
Discipline
Subject
Antitumor activity
Immunotherapy
Natural killer (NK) cells
NK-92
Sodium hydrogen exchanger 1 (NHE1/SLC9A1)
Allergy and Immunology
Cell Biology
Immunology and Infectious Disease
Medical Immunology
Funder
Grant number
License
Copyright date
2022-10-05T20:22:00-07:00
Distributor
Related resources
Author
Gong, Yaoyu
Contributor
Abstract

Adoptive cell transfer immunotherapy has remarkable efficacy against some hematological malignancies. However, its efficacy in solid tumors is limited by the adverse tumor microenvironment (TME) conditions, most notably that acidity inhibits T and NK cell mTORC1 activity and impairs cytotoxicity. In several reported studies, systemic buffering of tumor acidity enhanced the efficacy of immune checkpoint inhibitors. Paradoxically, we found in a Myc-inducible hepatocellular carcinoma model that buffering increased tumor mTORC1 activity, negating inhibition of tumor growth by anti-PD1 treatment. To avoid such adverse effects of systemic buffering favoring tumor growth, we overexpressed activated RHEB in the human NK-92 cell line, thereby rescuing acid-blunted mTORC1 activity and enhancing cytotoxicity. To mitigate the effect of acidity, we sought to metabolically engineer NK-92 cells with ectopically expressed acid extruder proteins. Whereas ectopic expression of carbonic anhydrase IX (CA9) moderately increased mTORC1 activity, it did not enhance effector function. In contrast, overexpressing a constitutively active Na+/H+-exchanger 1 (NHE1; SLC9A1) in NK-92 did not elevate mTORC1 but enhanced degranulation, target engagement, in vitro cytotoxicity, and in vivo antitumor activity. Our findings provide proof-of-concept that metabolic engineering of NK cells can enhance ACT for better efficacy against solid tumors without increasing mTORC1 activity.

Advisor
Chi V. Dang
Date of degree
2022-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation