Cytosolic Delivery Of Inhibitory Antibodies With Cationic Lipids

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Biochemistry & Molecular Biophysics
Discipline
Subject
Antibody
Cytosolic
Intracellular
Penetrating
Protein Delivery
Biochemistry
Biomedical
Funder
Grant number
License
Copyright date
2020-02-07T20:19:00-08:00
Distributor
Related resources
Author
Wang, Hejia Henry
Contributor
Abstract

Antibodies have become powerful therapeutics and research tools because they can be developed to directly inhibit almost any protein, but their inaility to enter the cytosol limits inhibitory antibodies to extracellular targets. Given that roughly two-thirds of drug targets lie inside of cells and many targets lack binding targets for small-molecule drugs, developing a cytosolic antibody delivery system would dramatically expand the druggable proteome. Cytosolic antibodies also offer unique opportunities to directly inhibit and study intracellular protein function. Here we demonstrate that immunoglobulin G (IgG) antibodies that are conjugated with anionic polypeptides (ApPs) can be complexed with cationic lipids through electrostatic interactions, enabling close to 90% cytosolic delivery efficiency with only 500 nM IgG. The ApP is fused to a small photoreactive antibody-binding domain (pAbBD) that can be site-specifically photocrosslinked to nearly all off-the-shelf IgGs without perturbing IgG binding affinity. Furthermore, the pAbBD can be functionalized with chemical moieties such as fluorophores at its C-terminus via proximity-based sortase-mediated ligation (PBSL), a chemoenzymatic bioconjugation approach that we have developed. We show that cytosolically delivered IgGs can inhibit the drug efflux pump multidrug resistance-associated protein 1 (MRP1) and the transcription factor NFκB. This work establishes a new approach for using existing antibody collections to modulate intracellular protein function and provides the foundations for therapeutic cytosolic antibodies.

Advisor
Andrew Tsourkas
Date of degree
2019-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation