Date of Award

2017

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Chemistry

First Advisor

Gary A. Molander

Abstract

The azaborine motif provides a unique opportunity to develop core isosteres by inserting B-N units in place of C=C bonds within aromatic scaffolds. These boron/nitrogen-containing heteroaromatic systems provide molecular frameworks that have similar, but not identical, geometrical shapes and electronic distributions to the analogous all carbon systems. Synthetic routes to the 1,3,2-benzodiazaborole core have been developed utilizing entirely bench-stable starting materials, including organotrifluoroborates, enabling a wider array of substrate analogues under facile reaction conditions. The physical, structural, and electronic properties of these compounds were explored computationally to understand the influence of the B-N replacement on structure, aromaticity, and the isosteric viability of these analogues. The class of azaborininones could similarly be accessed from both organotrifluoroborates and boronic acids. An inexpensive, common reagent, SiO2, was found to serve as both a fluorophile and desiccant to facilitate the annulation process across three different azaborininone platforms. Computationally-derived pKa values, NICS aromaticity calculations, and electrostatic potential surfaces revealed a unique isoelectronic/isostructural relationship between these azaborines and their carbon isosteres that changed based on boron connectivity. The 2,1-borazaronaphthalene motif can be accessed through robust methods of synthesis and subsequent functionalization strategies, affording an ideal platform to use for a variety of applications. However, the initial scope of substructures for this archetype has been limited by the lack of nitrogen-containing heteroaryls that can be incorporated within them. Modified reaction conditions enabled greater tolerance to provide access to a wider range of substructures. Additionally, computational and experimental studies of solvent decomposition demonstrate that substitution off boron is important to stability.

Post-annulation derivitization of the azaborine cores can allow access to higher order functionalized structures. A method for functionalizing the 2,1-borazaronaphthalene scaffold using ammonium alkylbis(catecholato)silicates via photoredox/nickel dual catalysis was found to be highly effective. By forging Csp3–Csp2 bonds via this approach, alkyl fragments with various functional groups can be introduced to the azaborine core, affording previously inaccessible heterocyclic isosteres in good to excellent yields. These conditions provide sensitive functional group tolerance, even permitting the cross-coupling of unprotected primary and secondary amines. Regioselective C-H borylation and subsequent cross-coupling of the 2,1-borazaronaphthalene core could also be achieved. Although 2,1-borazaronaphthalene is closely related to naphthalene in terms of structure, the argument is made that the former has electronic similarities to indole. Based on that premise, iridium-mediated C-H activation has enabled facile installation of a versatile, nucleophilic coupling handle at a previously inaccessible site of 2,1-borazaronaphthalenes. A variety of substituted 2,1-borazaronaphthalene cores can be successfully borylated and further cross-coupled in a facile manner to yield diverse C(8)-substituted 2,1-borazaronaphthalenes.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS