Air-Fluidized Grains as a Model System: Self-Propelling and Jamming

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Physics & Astronomy
Discipline
Subject
Condensed Matter Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for times longer than expected for thermal systems. The second experiment studies dense collections of self-propelling air-fluidized rods. We observe collective propagating modes that give rise to anomalously large fluctuations in the local number density. We quantify these compression waves by calculating the dynamic structure factor and show that the wavespeed is weakly linear with increasing density. It has been suggested that the observed behavior might be explained using the framework put forth by Baskaran et al. The third experiment seeks to determine whether a force analogous to the critical Casimir force in fluids exists for a large sphere fluidized in the presence of a background of smaller spheres. The behavior of such a large sphere is fully characterized showing that, rather than behaving like a sphere driven by turbulence, the large ball self-propels. We also show that the background is responsible for the purely attractive, intermediate-ranged interaction force between two simultaneously-fluidized large balls. The final experiment seeks to determine what parameters control the diverging relaxation timescale associated with the jamming transition. By tilting our apparatus, we quantify pressure, packing fraction, and temperature simultaneously with dynamics as we approach jamming. We obtain an equation of state that agrees well with simulation and free volume theory. We collapse the relaxation time by defining a time- and energy-scale using pressure, consistent with recent simulation. These experiments are further confirmation of the universality of the concepts of self-propelling and jamming.

Advisor
Douglas J. Durian
Date of degree
2010-05-17
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation