Peto's Paradox and the Evolution of Cancer Suppression

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Genomics & Computational Biology
Discipline
Subject
African elephant
cancer prevention
cancer suppression
evolution
humpback whale
peto's paradox
Bioinformatics
Biology
Evolution
Funder
Grant number
License
Copyright date
2015-11-16T20:14:00-08:00
Distributor
Related resources
Contributor
Abstract

In order to successfully build and maintain a multicellular body, somatic cells must be constrained from proliferating uncontrollably and destroying the organism. If all mammalian cells were equally susceptible to oncogenic mutations and had identical tumor suppressor mechanisms, one would expect that the risk of cancer would be proportional to the body size and lifespan of a species. This is because a greater number of cells and cell divisions over a lifetime would increase the chance of accumulating mutations that result in malignant transformation. Peto’s paradox is the clash between the theory that cancer incidence should increase with body size and lifespan, and the observation that it does not. In this thesis, I present the first comprehensive survey of empirical evidence across mammals in support of Peto’s paradox in addition to computational models that explore the numerous hypotheses that may help resolve the paradox. I provide a detailed examination of tumor suppression in African elephants (Loxodonta africana) and show that the genome contains redundant copies of the tumor suppressor gene TP53. I give evidence that these redundant copies are actively transcribed and also observe an increased apoptotic response after exposure to ionizing radiation, which may be linked to the expression of these genes. Few genomes of large, long-lived organisms are currently available, which motivated my work to provide the sequence and de novo assembly of the humpback whale (Megaptera novaeangliae) genome. In this genome, I discovered a set of tumor suppressor genes that have evolved at an accelerated rate along the whale lineage, which is suggestive of adaptation. Additionally, I find one gene that has undergone convergent evolution between the African elephant and the humpback whale. The overarching goal of my research is to gain a better understanding of how evolution has suppressed cancer in large, long-lived organisms in the hopes of ultimately developing improved cancer prevention in humans.

Advisor
Shane T. Jensen
Carlo C. Maley
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation