Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants

Krishna Gajan Vijayendran, University of Pennsylvania

Abstract

Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.

Subject Area

Organic chemistry|Physical chemistry|Computer science

Recommended Citation

Vijayendran, Krishna Gajan, "Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants" (2017). Dissertations available from ProQuest. AAI10615631.
https://repository.upenn.edu/dissertations/AAI10615631

Share

COinS