Departmental Papers (Dental)

Document Type

Journal Article

Date of this Version

7-19-2010

Publication Source

Connective Tissue Research

Volume

50

Issue

4

Start Page

270

Last Page

277

DOI

10.1080/03008200902846262

Abstract

Bone marrow stromal cells (BMSCs) contain osteoprogenitors responsive to stimulation by osteogenic growth factors like bone morphogenetic proteins (BMPs). When used as grafts, BMSCs can be harvested from different skeletal sites such as axial, appendicular and orofacial bones, but the lower therapeutic efficacy of BMPs on BMSCs-responsiveness in humans compared to animal models may be partly due to effects of skeletal site and age of donor. We previously reported superior differentiation capacity and osteogenic properties of orofacial BMSCs relative to iliac crest BMSCs in same individuals. This study tested the hypothesis that recombinant human BMP-2 (rhBMP-2) stimulates human BMSCs differently based on age and skeletal site of harvest. Adult maxilla, mandible and iliac crest BMSCs from same individuals and pediatric iliac crest BMSCs were comparatively assessed for BMP-2 responsiveness under serum-containing and serum-free insulin-supplemented culture conditions. Adult orofacial BMSCs were more BMP-2-responsive than iliac crest BMSCs based on higher gene transcripts of alkaline phosphatase, osteopontin and osteogenic transcription factors MSX-2 and Osterix in serum-free insulin-containing medium. Pediatric iliac crest BMSCs were more responsive to rhBMP-2 than adult iliac crest BMSCs based on higher expression of alkaline phosphatase and osteopontin in serum-containing medium. Unlike orofacial BMSCs, MSX-2 and Osterix transcripts were similarly expressed by adult and pediatric iliac crest BMSCs in response to rhBMP-2. These data demonstrate that age and skeletal site-specific differences exist in BMSC osteogenic responsiveness to BMP-2 stimulation and suggest that MSX-2 and Osterix may be potential regulatory transcription factors in BMP-mediated osteogenesis of adult orofacial cells.

Copyright/Permission Statement

This is an Accepted Manuscript of an article published by Taylor & Francis in Connective Tissue Research on 11 Sep 2009, available online: https://www.tandfonline.com/doi/full/10.1080/03008200902846262

Keywords

Bone morphogenic proteins, age, skeletal site, stem cells

Included in

Dentistry Commons

Share

COinS
 

Date Posted: 10 August 2018

This document has been peer reviewed.