Departmental Papers (Dental)
Document Type
Journal Article
Date of this Version
10-22-2004
Publication Source
Journal of Biological Chemistry
Volume
279
Issue
43
Start Page
44606
Last Page
44612
DOI
10.1074/jbc.M408035200
Abstract
Previously, we reported that platelet-activating factor (PAF) stimulates higher G protein activation and a more robust Ca2+ mobilization in RBL-2H3 cells expressing earboxyl terminus deletion, phosphorylation-deficient mutant of PAF receptor (mPAFR) when compared with the wild-type receptor (PAFR). However, PAF did not provide sufficient signal for CC chemokine receptor ligand 2 (CCL2) production in cells expressing mPAFR. Based on these findings, we hypothesized that receptor phosphorylation provides a G protein-independent signal that synergizes with Ca2+ mobilization to induce CCL2 production. Here, we show that a mutant of PAFR (D289A), which does not couple to G proteins, was resistant to agonist-induced receptor phosphorylation. Unexpectedly, we found that when this mutant was coexpressed with mPAFR, it restored NF-κB activation and CCL2 production. PAF caused translocation of β-arrestin from the cytoplasm to the membrane in cells expressing PAFR but not a phosphorylation-deficient mutant in which all Ser/Thr residues were replaced with Ala (AST-PAFR). Interestingly, PAF induced significantly higher NF-κB and nuclear factor of activated T cells (NFAT)-luciferase activity as well as CCL2 production in cells expressing ΔST-PAFR than those expressing PAFR. Furthermore, a Ca2+/calcineurin inhibitor completely inhibited PAF-induced NFAT activation and CCL2 production but not NF-κB activation. These findings suggest that the carboxyl terminus of PAFR provides a G protein-independent signal for NF-κB activation, which synergizes with G protein-mediated Ca2+/calcineurin activation to induce CCL2 production. However, receptor phosphorylation and β-arrestin recruitment inhibit CCL2 production by blocking both NF-κB activation and Ca 2+/calcineurin-dependent signaling pathways
Recommended Citation
Venkatesha, R. T., Ahamed, J., Nuesch, C., Zaidi, A. K., & Ali, H. (2004). Platelet-Activating Factor-Induced Chemokine Gene Expression Requires NF-κB Activation and Ca2+/calcineurin Signaling Pathways: Inhibition by Receptor Phosphorylation and β-Arrestin Recruitment. Journal of Biological Chemistry, 279 (43), 44606-44612. http://dx.doi.org/10.1074/jbc.M408035200
Date Posted: 10 February 2023
This document has been peer reviewed.