Differential Requirements for H/ACA Ribonucleoprotein Components in Cell Proliferation and Response to DNA Damage

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Dental)
Degree type
Discipline
Subject
Dentistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Lin, Ping
Mobasher, Maral E.
Hakakian, Yasaman
Kakarla, Veena
Naseem, Anum F.
Ziai, Heliya
Alawi, Faizan
Contributor
Abstract

H/ACA ribonucleoproteins (RNPs) are comprised of four conserved proteins, dyskerin, NHP2, NOP10, and GAR1, and a function-specifying, noncoding H/ACA RNA. H/ACA RNPs contribute to telomerase assembly and stabilization, and posttranscriptional processing of nascent ribosomal RNA and spliceosomal RNA. However, very little is known about the coordinated action of the four proteins in other biologic processes. As described herein, we observed a differential requirement for the proteins in cell proliferation and identified a possible reliance for these factors in regulation of specific DNA damage biomarkers. In particular, GAR1 expression was upregulated following exposure to all forms of genotoxic stress tested. In contrast, levels of the other proteins were either reduced or unaffected. Only GAR1 showed an altered subcellular localization with a shift from the nucleolus to the nucleoplasm after ultraviolet-C irradiation and doxorubicin treatments. Transient siRNA-mediated depletion of GAR1 and dyskerin arrested cell proliferation, whereas loss of either NHP2 or NOP10 had no effect. Finally, loss of dyskerin, GAR1, NHP2, and NOP10, respectively, limited the accumulation of DNA damage biomarkers. However, the individual responses were dependent upon the specific type of damage incurred. In general, loss of GAR1 had the most suppressive effect on the biomarkers tested. Since the specific responses to genotoxic stress, the contribution of each protein to cell proliferation, and the activation of DNA damage biomarkers were not equivalent, this suggests the possibility that at least some of the proteins, most notably GAR1, may potentially function independently of their respective roles within H/ACA RNP complexes.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2015-08-12
Journal title
Histochemistry and Cell Biology
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection