Plastid Biotechnology for Crop Production: Present Status and Future Perspectives

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Dental)
Degree type
Discipline
Subject
Plastid engineering; Food security; Climate change; Cereal crops; Chloroplast genome
Dentistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Clarke, Jihong Liu
Daniell, Henry
Contributor
Abstract

The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2011-07-01
Journal title
Plant Molecular Biology
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
At the time of publication, author Henry Daniell was affiliated with Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida. Currently, he is a faculty member at the School of Dental Medicine at the University of Pennsylvania.
Recommended citation
Collection