Expression and Characterization of Antimicrobial Peptides Retrocyclin-101 and Protegrin-1 in Chloroplasts to Control Viral and Bacterial Infections

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Dental)
Degree type
Discipline
Subject
antimicrobial peptide
chloroplast genetic engineering
molecular farming
plant-made biopharmaceuticals
Dentistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Lee, Seung-Bum
Li, Baichuan
Jin, Shuangxia
Daniell, Henry
Contributor
Abstract

Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%–38% and 17%~26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa–like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6-fold higher yield of RC101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2011-01-01
Journal title
Plant Biotechnology Journal
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
At the time of publication, author Henry Daniell was affiliated with the University of Central Florida. Currently, he is a faculty member at the School of Dental Medicine at the University of Pennsylvania.
Recommended citation
Collection