Field Production and Functional Evaluation of Chloroplast-Derived Interferon-α2b

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Dental)
Degree type
Discipline
Subject
antitumour
antiviral
gene containment
molecular ‘pharming’
plant-made cytokine
Dentistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Arlen, Philip A.
Falconer, Regina
Cherukumilli, Sri
Cole, Amy
Cole, Alexander M.
Oishi, Karen K.
Daniell, Henry
Contributor
Abstract

Type I interferons (IFNs) inhibit viral replication and cell growth and enhance the immune response, and therefore have many clinical applications. IFN-α2b ranks third in world market use for a biopharmaceutical, behind only insulin and erythropoietin. The average annual cost of IFN-α2b for the treatment of hepatitis C infection is $26 000, and is therefore unavailable to the majority of patients in developing countries. Therefore, we expressed IFN-α2b in tobacco chloroplasts, and transgenic lines were grown in the field after obtaining United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) approval. Stable, site-specific integration of transgenes into chloroplast genomes and homoplasmy through several generations were confirmed. IFN-α2b levels reached up to 20% of total soluble protein, or 3 mg per gram of leaf (fresh weight). Transgenic IFN-α2b had similar in vitrobiological activity to commercially produced PEG-Intron™ when tested for its ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect (VSV CPE) assay and to inhibit early-stage human immunodeficiency virus (HIV) infection. The antitumour and immunomodulating properties of IFN-α2b were also seen in vivo . Chloroplast-derived IFN-α2b increased the expression of major histocompatibility complex class I (MHC I) on splenocytes and the total number of natural killer (NK) cells. Finally, IFN-α2b purified from chloroplast transgenic lines (cpIFN-α2b) protected mice from a highly metastatic tumour line. This demonstration of high levels of expression of IFN-α2b, transgene containment and biological activity akin to that of commercial preparations of IFN-α2b facilitated the first field production of a plant-derived human blood protein, a critical step towards human clinical trials and commercialization.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-07-01
Journal title
Plant Biotechnology Journal
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
At the time of publication, author Henry Daniell was affiliated with the University of Central Florida. Currently, he is a faculty member at the School of Dental Medicine at the University of Pennsylvania
Recommended citation
Collection