Departmental Papers (Dental)
Document Type
Journal Article
Date of this Version
1-2012
Publication Source
Metabolic Engineering
Volume
14
Issue
1
Start Page
19
Last Page
28
DOI
10.1016/j.ymben.2011.11.005
Abstract
Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.
Copyright/Permission Statement
© <2012>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords
Plant metabolic engineering, Mevalonate pathway, Methylerythritol phosphate pathway, Chloroplast engineering, Tobacco, Isoprenoid biosynthesis
Recommended Citation
Kumar, S., Hahn, F. M., Baidoo, E., Kahlon, T. S., & Wood, D. F. (2012). Remodeling the Isoprenoid Pathway in Tobacco by Expressing the Cytoplasmic Mevalonate Pathway in Chloroplasts. Metabolic Engineering, 14 (1), 19-28. http://dx.doi.org/10.1016/j.ymben.2011.11.005
Date Posted: 01 March 2022
This document has been peer reviewed.
Comments
At the time of publication, author Henry Daniell was affiliated with the University of Central Florida. Currently, he is a faculty member at the School of Dental Medicine at the University of Pennsylvania.