Departmental Papers (Dental)

Document Type

Journal Article

Date of this Version


Publication Source

Tree Physiology





Start Page


Last Page





Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers designed to amplify the chloroplast genome of these two species. The lengths of the B. oldhamii and D. latiflorus chloroplast genomes are 139,350 and 139,365 bp, respectively. The organization structure and the gene order of these two bamboos are identical to other members of Poaceae. Highly conserved chloroplast genomes of Poaceae facilitated sequencing by the PCR method. Phylogenetic analysis using both chloroplast genomes confirmed the results obtained from studies on chromosome number and reproductive organ morphology. There are 23 gaps, insertions/deletions > 100 bp, in the chloroplast genomes of 10 genera of Poaceae compared in this study. The phylogenetic distribution of these gaps corresponds to their taxonomic placement. The sequences of these two chloroplast genomes provide useful information for studying bamboo evolution, ecology and biotechnology.

Copyright/Permission Statement

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Tree Physiology following peer review. The version of record [WU, F.-H., KAN, D.-P., LEE, S.-B., DANIELL, H., LEE, Y.-W., LIN, C.-C., … LIN, C.-S. (2009). Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiology, 29(6), 847–856.] is available online at: xxxxxxx []


At the time of publication, author Henry Daniell was affiliated with the University of Central Florida. Currently, he is a faculty member at the School of Dental Medicine at the University of Pennsylvania.


Bambusoideae, biotechnology, phylogenetic analysis, Poaceae

Included in

Dentistry Commons



Date Posted: 01 March 2022

This document has been peer reviewed.