Cholesterol-Rich Membrane Microdomains Mediate Cell Cycle Arrest Induced by Actinobacillus Actinomycetemcomitans Cytolethal-Distending Toxin

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Dental)
Degree type
Discipline
Subject
Dentistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Boesze-Battaglia, Kathleen
Besack, Dave
McKay, Terry
Zekavat, Ali
Jordan-Sciutto, Kelly
Shenker, Bruce J.
Contributor
Abstract

We have previously shown that Actinobacillus actinomycetemcomitans cytolethal-distending toxin (Cdt) is a potent immunosuppressive agent that induces G2/M arrest in human lymphocytes. In this study, we explored the possibility that Cdt-mediated immunotoxicity involves lipid membrane microdomains. We first determined that following treatment of Jurkat cells with Cdt holotoxin all three Cdt subunits localize to these microdomains. Laser confocal microscopy was employed to colocalize the subunits with GM1-enriched membrane regions which are characteristic of membrane rafts. Western blot analysis of isolated lipid rafts also demonstrated the presence of Cdt peptides. Cholesterol depletion, using methyl β-cyclodextrin, protected cells from the ability of the Cdt holotoxin to induce G2 arrest. Moreover, cholesterol depletion reduced the ability of the toxin to associate with Jurkat cells. Thus, lipid raft integrity is vital to the action of Cdt on host cells. The implications of our observations with respect to Cdt mode of action are discussed.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2006-05-01
Journal title
Cell Microbiology
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection