Departmental Papers (Dental)

Document Type

Journal Article

Date of this Version

3-2016

Publication Source

Acta Biomaterialia

Start Page

225

Last Page

234

DOI

10.1016/j.actbio.2016.01.032

Abstract

Dental pulp infection and necrosis are widespread diseases. Conventional endodontic treatments result in a devitalized and weakened tooth. In this work, we synthesized novel star-shaped polymer to self-assemble into unique nanofibrous spongy microspheres (NF-SMS), which were used to carry human dental pulp stem cells (hDPSCs) into the pulp cavity to regenerate living dental pulp tissues. It was found that NF-SMS significantly enhanced hDPSCs attachment, proliferation, odontogenic differentiation and angiogenesis, as compared to control cell carriers. Additionally, NF-SMS promoted vascular endothelial growth factor (VEGF) expression of hDPSCs in a 3D hypoxic culture. Hypoxia-primed hDPSCs/NF-SMS complexes were injected into the cleaned pulp cavities of rabbit molars for subcutaneous implantation in mice. After 4 weeks, the hypoxia group significantly enhanced angiogenesis inside the pulp chamber and promoted the formation of ondontoblast-like cells lining along the dentin-pulp interface, as compared to the control groups (hDPSCs alone group, NF-SMS alone group, and hDPSCs/NF-SMS group pre-cultured under normoxic conditions). Furthermore, in an in situ dental pulp repair model in rats, hypoxia-primed hDPSCs/NF-SMS were injected to fully fill the pulp cavity and regenerate pulp-like tissues with a rich vasculature and a histological structure similar to the native pulp.

Copyright/Permission Statement

© <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Regeneration, stem cell, dental pulp, hypoxic, biomaterial, microcarrier

Included in

Dentistry Commons

Share

COinS
 

Date Posted: 01 March 2022

This document has been peer reviewed.