Document Type

Working Paper

Date of this Version



Code similarity systems are integral to a range of applications from code recommendation to automated software defect correction. We argue that code similarity is now a first-order problem that must be solved. To begin to address this, we present machine Inferred Code Similarity (MISIM), a novel end-to-end code similarity system that consists of two core components. First, MISIM uses a novel context-aware semantic structure, which is designed to aid in lifting semantic meaning from code syntax. Second, MISIM provides a neural-based code similarity scoring algorithm, which can be implemented with various neural network architectures with learned parameters. We compare MISIM to three state-of-the-art code similarity systems: (i) code2vec, (ii) Neural Code Comprehension, and (iii) Aroma. In our experimental evaluation across 328,155 programs (over 18 million lines of code), MISIM has 1.5x to 43.4x better accuracy than all three systems.


Computer Science - Machine Learning; Computer Science - Software Engineering; Statistics - Machine Learning



Date Posted: 18 December 2020