Technical Reports (CIS)
Title
Clifford Algebras, Clifford Groups, and a Generalization of the Quaternions: The Pin and Spin Groups
Document Type
Technical Report
Subject Area
GRASP
Date of this Version
11-9-2013
Abstract
One of the main goals of these notes is to explain how rotations in Rn are induced by the action of a certain group, Spin(n), on Rn, in a way that generalizes the action of the unit complex numbers, U(1), on R2, and the action of the unit quaternions, SU(2), on R3 (i.e., the action is denied in terms of multiplication in a larger algebra containing both the
group Spin(n) and R(n). The group Spin(n), called a spinor group, is defined as a certain subgroup of units of an algebra, Cln, the Clifford algebra associated with Rn.
Since the spinor groups are certain well chosen subgroups of units of Clifford algebras, it is necessary to investigate Clifford algebras to get a firm understanding of spinor groups. These notes provide a tutorial on Clifford algebra and the groups Spin and Pin, including a study of the structure of the Cliord algebra Clp;q associated with a nondegenerate symmetric bilinear form of signature (p; q) and culminating in the beautiful \8-periodicity theorem" of Elie Cartan and Raoul Bott (with proofs).
Recommended Citation
Jean H. Gallier, "Clifford Algebras, Clifford Groups, and a Generalization of the Quaternions: The Pin and Spin Groups", . November 2013.
Date Posted: 26 October 2007
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-07-21.