Technical Reports (CIS)

Document Type

Technical Report

Date of this Version

May 2006

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. TR-CIS-06-09.

Abstract

Hardware transactional memory has great potential to simplify the creation of correct and efficient multithreaded programs, enabling programmers to exploit the soon-to-be-ubiquitous multi-core designs. Transactions are simply segments of code that are guaranteed to execute without interference from other concurrently-executing threads. The hardware executes transactions in parallel, ensuring non-interference via abort/rollback/restart when conflicts are detected. Transactions thus provide both a simple programming interface and a highly-concurrent implementation that serializes only on data conflicts. A progression of recent work has broadened the utility of transactional memory by lifting the bound on the size and duration of transactions, called unbounded transactions. Nevertheless, two key challenges remain: (i) I/O and system calls cannot appear in transactions and (ii) existing unbounded transactional memory proposals require complex implementations.

We describe a system for fully unrestricted transactions (i.e., they can contain I/O and system calls in addition to being unbounded in size and duration). We achieve this via two modes of transaction execution: restricted (which limits transaction size, duration, and content but is highly concurrent) and unrestricted (which is unbounded and can contain I/O and system calls but has limited concurrency because there can be only one unrestricted transaction executing at a time). Transactions transition to unrestricted mode only when necessary. We introduce unoptimized and optimized implementations in order to balance performance and design complexity.

Share

COinS
 

Date Posted: 02 March 2007