Departmental Papers (CIS)

Date of this Version


Document Type

Conference Paper


Jeffrey A. Vaughan and Steve Zdancewic. A Cryptographic Decentralized Label Model. In IEEE 2007 Symposium on Security and Privacy (Oakland), pages 192-206, 2007

DOI: 10.1109/SP.2007.5

©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.


Information-flow security policies are an appealing way of specifying confidentiality and integrity policies in information systems. Most previous work on language-based security has assumed that programs run in a closed, managed environment and that they use potentially unsafe constructs, such as declassification, to interface to external communication channels, perhaps after encrypting data to preserve its confidentiality. This situation is unsatisfactory for systems that need to communicate over untrusted channels or use untrusted persistent storage, since the connection between the cryptographic mechanisms used in the untrusted environment and the abstract security labels used in the trusted language environment is ad hoc and unclear.

This paper addresses this problem in three ways: First, it presents a simple, security-typed language with a novel mechanism called packages that provides an abstract means for creating opaque objects and associating them with security labels; well-typed programs in this language enforce noninterference. Second, it shows how to implement these packages using public-key cryptography. This implementation strategy uses a variant of Myers and Liskov's decentralized label model, which supports a rich label structure in which mutually distrusting data owners can specify independent confidentiality and integrity requirements. Third, it demonstrates that this implementation of packages is sound with respect to Dolev-Yao style attackers-such an attacker cannot determine the contents of a package without possessing the appropriate keys, as determined by the security label on the package.



Date Posted: 18 July 2012