Graph Distances in the Data-Stream Model

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
CPS Theory
stream algorithms
graph distances
spanners
COMMUNICATION COMPLEXITY
ALGORITHMS
CONSTRUCTION
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Feigenbaum, Joan
Mcgregor, Andrew
Suri, Siddarth
Zhang, Jian
Contributor
Abstract

We explore problems related to computing graph distances in the data-stream model. The goal is to design algorithms that can process the edges of a graph in an arbitrary order given only a limited amount of working memory. We are motivated by both the practical challenge of processing massive graphs such as the web graph and the desire for a better theoretical understanding of the data-stream model. In particular, we are interested in the trade-offs between model parameters such as per-data-item processing time, total space, and the number of passes that may be taken over the stream. These trade-offs are more apparent when considering graph problems than they were in previous streaming work that solved problems of a statistical nature. Our results include the following: (1) Spanner construction: There exists a single-pass, (O) over tilde (tn(1+1/t))-space, (O) over tilde (t(2)n(1/t))-time-per-edge algorithm that constructs a (2t + 1)-spanner. For t = Omega(log n/log log n), the algorithm satisfies the semistreaming space restriction of O(n polylog n) and has per-edge processing time O(polylog n). This resolves an open question from [J. Feigenbaum et al., Theoret. Comput. Sci., 348 (2005), pp. 207-216]. (2) Breadth-first-search (BFS) trees: For any even constant k, we show that any algorithm that computes the first k layers of a BFS tree from a prescribed node with probability at least 2/3 requires either greater than k/2 passes or Omega(n(1+1/k)) space. Since constructing BFS trees is an important subroutine in many traditional graph algorithms, this demonstrates the need for new algorithmic techniques when processing graphs in the data-stream model. (3) Graph-distance lower bounds: Any t-approximation of the distance between two nodes requires Omega(n(1+1/t)) space. We also prove lower bounds for determining the length of the shortest cycle and other graph properties. (4) Techniques for decreasing per-edge processing: We discuss two general techniques for speeding up the per-edge computation time of streaming algorithms while increasing the space by only a small factor.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2008-12-19
Journal title
SIAM Journal of Computing
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection