The All-or-Nothing Multicommodity Flow Problem

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
multicommodity flow
approximation algorithms
edge disjoint paths
oblivious routing
online algorithms
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Chekuri, Chandra
Shepherd, F. Bruce
Contributor
Abstract

We consider the all-or-nothing multicommodity flow problem in general graphs. We are given a capacitated undirected graph G = (V, E, u) and set of k pairs s1t1, s2t2, ..., sktk. Each pair has a unit demand. The objective is to find a largest subset S of {1, 2, ..., k} such that for every i in S we can send a flow of one unit between si and ti. Note that this differs from the edge-disjoint path problem (EDP) in that we do not insist on integral flows for the pairs. This problem is NP-hard, and APX-hard, even on trees. For trees, a 2-approximation is known for the cardinality case and a 4-approximation for the weighted case. In this paper we build on a recent result of Raecke on low congestion oblivious routing in undirected graphs to obtain a poly-logarithmic approximation for the all-or-nothing problem in general undirected graphs. The best previous known approximation for all-or-nothing flow problem was O(min(n2/3, square root of m)), the same as that for EDP. Our algorithm extends to the case where each pair siti has a demand di associated with it and we need to completely route di to get credit for pair i. We also consider the online admission control version where pairs arrive online and the algorithm has to decide immediately on its arrival whether to accept it or not. We obtain a randomized algorithm with a competitive ratio that is similar to the approximation ratio for the offline algorithm.

Advisor
Date of presentation
2004-06-13
Conference name
Departmental Papers (CIS)
Conference dates
2023-05-16T21:27:25.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright ACM, 2004. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 36th Annual ACM Symposium on Theory of Computing 2004 (STOC 2004), pages 156-165. Publisher URL: http://doi.acm.org/10.1145/1007352.1007383
Recommended citation
Collection