April 1991

Design of a Tool-Surrounding Compliant Instrumented Wrist

Thomas Lindsay
University of Pennsylvania

Richard P. Paul
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/373
For more information, please contact repository@pobox.upenn.edu.
Design of a Tool-Surrounding Compliant Instrumented Wrist

Abstract
Interaction between robot and environment is an extremely important aspect of robotic research. Compliance helps reduce the effects of impact when there is robot/environment interaction. To accomplish useful tasks, it is important to implement hybrid control; accurate position control is needed in unconstrained directions and accurate force control is needed in constrained direction. Force control can be more responsive with a compliant force/torque sensor [3], but positional accuracy is reduced with compliance. An instrumented compliant wrist device can be used to achieve both responsive force control and accurate position control. The wrist is connected in series between the end of the robot and the tool. The wrist device uses rubber elements for compliance and damping, and a serial linkage, with potentiometers at each joint, is used for sensing the deflections produced in the wrist. Several major improvements are proposed for the Xu wrist. The wrist can be designed to surround the tool, thus reducing the distance between the end of the robot and the end of the tool, thus reducing the distance between the end of the robot and the end of the tool. The compliant structure is redesigned for more even compliance, and the sensing structure kinematics are simplified. In this over, the compliance, kinematics, and accuracy of the wrist will be presented. Also, software for finding the wrist transform, and plans for the wrist are given.

Comments

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/373
Design Of A Tool-Surrounding Compliant Instrumented Wrist

MS-CIS-91-30
GRASP LAB 258

Thomas Lindsay
Richard P. Paul

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104-6389

April 1991
Design of a Tool-Surrounding Compliant Instrumented Wrist†

Thomas Lindsay and Richard P. Paul

Abstract

Interaction between robot and environment is an extremely important aspect of robotic research. Compliance helps reduce the effects of impact when there is robot/environment interaction. To accomplish useful tasks, it is important to implement hybrid control; accurate position control is needed in unconstrained directions, and accurate force control is needed in constrained directions. Force control can be more responsive with a compliant force/torque sensor [3], but positional accuracy is reduced with compliance. An instrumented compliant wrist device can be used to achieve both responsive force control and accurate position control [6].

The wrist is connected in series between the end of the robot and the tool. The wrist device uses rubber elements for compliance and damping, and a serial linkage, with potentiometers at each joint, is used for sensing the deflections produced in the wrist. Several major improvements are proposed for the Xu wrist. The wrist can be designed to surround the tool, thus reducing the distance between the end of the robot and the end of the tool. The compliant structure is redesigned for more even compliance, and the sensing structure kinematics are simplified.

In this overview, the compliance, kinematics, and accuracy of the wrist will be presented. Also, software for finding the wrist transform, and plans for the wrist are given.

†This material is based upon work supported by the National Science Foundation under Grant No. BCS-89-01352, “Model-Based Teleoperation in the Presence of Delay.” Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Contents

1 Introduction 4

2 Compliant Structure 5

3 Linkage Kinematics 9

4 Accuracy 12
 4.1 Positional Accuracy 12
 4.2 Hysteresis Effects 13

5 Wrist Software 13

6 Wrist Plans 16
 6.1 General 16
 6.2 Compliant Structure 19
 6.3 Sensing Linkage 22
 6.4 Electronics 28

7 Conclusion and Future Work 30
List of Figures

1. The Tool-Surrounding Compliant Instrumented Wrist 4
2. Compliant Structure ... 5
3. Compliant Structure Measurements. $L_1=1.25\,\text{"},\,L_2=0.50\,\text{"}$ 6
4. Rubber Element Placement ... 8
5. Serial Linkage Chain ... 9
6. Kinematic Skeleton ... 10
7. Side view of linkage structure ... 10
8. Top view of linkage structure .. 11
9. Top Plate .. 17
10. Bottom Plate ... 18
11. Compliant Structure - Exploded View .. 19
12. Compliant Structure Piece 1 ... 20
13. Compliant Structure Piece 2 ... 21
14. Sensing Linkage - Exploded View ... 22
15. Linkage Piece 1 .. 23
16. Linkage Piece 2 .. 24
17. Linkage Piece 3 .. 25
18. Linkage Piece 4 .. 26
19. Linkage Piece 5 .. 27
20. Wrist Electronics ... 28
21. Power and Connections .. 29
1 Introduction

The wrist outlined herein is a solution to a complex problem: compliance in a robot wrist is desired to reduce the effect of impacts between the robot and the environment, and to create a more responsive force control. However, a compliant wrist by itself has a limit to the effective stiffness of the manipulator in position control, and the exact position of the end of the wrist (and thus the environment, when in contact) is lost [5]. By instrumenting the wrist as shown here, though, both these problems are overcome. Active control can increase the stiffness of the system, and the position transform of the wrist is known. Using the instrumented wrist as a compliant force/torque sensor leads to more responsive force control than with a stiff sensor [3], and more accurate position control than with a compliant wrist [6].

The wrist is overall 4.25 x 4.25 x 3.0 inches high. A 1.75 x 1.75 inch tool can be mounted inside the wrist to a depth of 2.5 inches maximum, depending on the desired flexure of the wrist.

The rest of the paper is organized as follows: section 2 outlines the compliance of the wrist, and how it can be modified with different compliant elements, section 3 explains the sensing linkage kinematics, section 4 is a short analysis of the accuracy of the wrist, section 5 contains a simple software routine to compute the wrist transform, section 6 contains the mechanical and electrical plans for the wrist, and section 7 gives a conclusion including current research using the wrist and future work on the wrist.
The compliant structure of the new wrist is composed of 12 rubber elements, which provide compliance and a small degree of damping. Figure 2 shows the design, with the bottom plate (attached to the robot) fixed to the four aluminum blocks at the corners, and the top plate (where the tool is attached) fixed to the four compliant elements (cylinders) at the top. The tool can then be partially enclosed in the middle of this structure. Because of the physical limitations of the compliant elements, forces on the wrist should stay below 3.0 lbs.

The stiffness in each direction can be approximated as follows:

\[K_z = \left(\frac{1}{4K_a} + \frac{1}{8K_r} \right)^{-1} \]
\[K_x = K_y = \left(\frac{1}{4K_r} + \frac{1}{4K_a + 4K_r} \right)^{-1} \]
\[K_\phi = \left(\frac{1}{4K_r L_1^2} + \frac{1}{8K_a L_1^2} \right)^{-1} \]
\[K_\theta = \left(\frac{1}{2K_a L_1^2} + \frac{1}{4K_r L_1^2 + 4K_r L_2^2} \right)^{-1} \]

where \(K_a \) and \(K_r \) are the spring stiffness for the aluminum block and rubber element, respectively.
Below is the table of compression and shear stiffness for sample compliant elements.
Note that in the current design, mount A was used for all positions on the wrist. Mount N occurs when no mount element is used for a site.

<table>
<thead>
<tr>
<th>Mount [1]</th>
<th>K_a</th>
<th>K_r</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/in (N/mm)</td>
<td>lb/in (N/mm)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>66.7 (2.63)</td>
<td>12.0 (.472)</td>
<td>mount used</td>
</tr>
<tr>
<td>B</td>
<td>92.3</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>175.0</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>228.6</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.0</td>
<td>0.0</td>
<td>no mount</td>
</tr>
</tbody>
</table>
3 Linkage Kinematics

The sensing mechanism is composed of a serial linkage chain with potentiometers at each joint. Figure 5 shows the serial linkage.

Using forward kinematics, the transformation between the robot wrist and the end of the tool can be calculated. The kinematic skeleton of the wrist is shown in figure 6.

The D-H parameters for the sensing mechanism, shown in figures 7 and 8 are:

<table>
<thead>
<tr>
<th>joint</th>
<th>a</th>
<th>d</th>
<th>α</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-24.5</td>
<td>-90</td>
<td>θ₁</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>95.0</td>
<td>-90</td>
<td>θ₂</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>24.5</td>
<td>90</td>
<td>-90 + θ₃</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>95.0</td>
<td>90</td>
<td>-90 + θ₄</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>47.5</td>
<td>90</td>
<td>90 + θ₅</td>
</tr>
<tr>
<td>6</td>
<td>47.5</td>
<td>-24.5</td>
<td>180</td>
<td>180 + θ₆</td>
</tr>
</tbody>
</table>
\[
u_{33} = -s2 \cdot s3 \cdot c4 - c2 \cdot s4;
\]
\[
u_{34} = -d4 \cdot s2 \cdot c3 + d3 \cdot c2 - d1;
\]

\[
/* v = u \cdot A5 */
\]
\[
v_{11} = -u_{11} \cdot s5 + u_{12} \cdot c5;
\]
\[
v_{12} = u_{13};
\]
\[
v_{13} = u_{11} \cdot c5 + u_{12} \cdot s5;
\]
\[
v_{14} = d5 \cdot u_{13} + u_{14};
\]
\[
v_{21} = -u_{21} \cdot s5 + u_{22} \cdot c5;
\]
\[
v_{22} = u_{23};
\]
\[
v_{23} = u_{21} \cdot c5 + u_{22} \cdot s5;
\]
\[
v_{24} = d5 \cdot u_{23} + u_{24};
\]
\[
v_{31} = -u_{31} \cdot s5 + u_{32} \cdot c5;
\]
\[
v_{32} = u_{33};
\]
\[
v_{33} = u_{31} \cdot c5 + u_{32} \cdot s5;
\]
\[
v_{34} = d5 \cdot u_{33} + u_{34};
\]

\[
/* Wrist transform */
\]
\[
tw.n.x = -v_{11} \cdot c6 - v_{12} \cdot s6;
\]
\[
tw.o.x = -v_{11} \cdot s6 + v_{12} \cdot c6;
\]
\[
tw.a.x = -v_{13};
\]
\[
tw.p.x = -a6 \cdot v_{11} \cdot c6 - a6 \cdot v_{12} \cdot s6 + d6 \cdot v_{13} + v_{14};
\]
\[
tw.n.y = -v_{21} \cdot c6 - v_{22} \cdot s6;
\]
\[
tw.o.y = -v_{21} \cdot s6 + v_{22} \cdot c6;
\]
\[
tw.a.y = -v_{23};
\]
\[
tw.p.y = -a6 \cdot v_{21} \cdot c6 - a6 \cdot v_{22} \cdot s6 + d6 \cdot v_{23} + v_{24};
\]
\[
tw.n.z = -v_{31} \cdot c6 - v_{32} \cdot s6;
\]
\[
tw.o.z = -v_{31} \cdot s6 + v_{32} \cdot c6;
\]
\[
tw.a.z = -v_{33};
\]
\[
tw.p.z = -a6 \cdot v_{31} \cdot c6 - a6 \cdot v_{32} \cdot s6 + d6 \cdot v_{33} + v_{34};
\]

\[
/* Compute roll, pitch, and yaw angles from wrist transform */
\]
\[
noatorpy(&car_diffs[5], &car_diffs[4], &car_diffs[3], &tw);
\]
\[
car_diffs[0] = tw.p.x;
\]
\[
car_diffs[1] = tw.p.y;
\]
\[
car_diffs[2] = tw.p.z - 73.5; /* 73.5 is the thickness of the wrist */
\]

\}
6 Wrist Plans

6.1 General

The compliant structure and the sensing linkage are sandwiched between the top and bottom plate. The compliant structure is connected to the bottom plate with four 8-32 x 1/2" countersunk machine screws, and to the top plate by the compliant elements. The sensing linkage is attached to the top and bottom plates by two 8-32 x 1/8" countersunk machine screws. The wrist is connected to the robot via a quick mount mechanism (Lord Corporation, not shown), which bolts into the four 8-32 threaded holes in the bottom plate. A 16-pin connector is also attached to the bottom plate.
Figure 9: Top Plate

Top Plate
Needed: 1
Material: 1/8" Aluminum
Plate
Note: All holes tapped for 8-32 threads except where noted
Units = Inches
Figure 10: Bottom Plate

Bottom Plate
Needed: 1
Material: 1/8" Aluminum Plate
Note: All holes 5/32" diameter and countersunk except where noted
Units = Inches
6.2 Compliant Structure

Figure 11: Compliant Structure - Exploded View

The 12 compliant elements are part number 10Z2-302A from Stock Drive Products, New Hyde Park, NY. These elements have 8-32 x 3/8" threaded studs. Four of these must have one stud shortened to 3/16", one each attached to compliant structure piece 2. All elements connected to compliant structure piece 1 are attached with 8-32 hex nuts.
Figure 12: Compliant Structure Piece 1

Compliant Structure
Piece 1

Needed: 4

Material: Aluminum

Units = Inches

0.2500

1.0000

0.5000

5/32

3/32

5/32

19/32

3/32

0.5000
Figure 13: Compliant Structure Piece 2
6.3 Sensing Linkage

Potentiometers used are part number RV6 NAYSD 10 2 A from Clarostat Mfg. Co., Inc., Dover, NH. Potentiometers are attached to linkage pieces with 4-40 x 1/4" machine screws.

Figure 14: Sensing Linkage - Exploded View
Linkage Piece 1
Needed: 2
Material: Aluminum
Units = Inches

Figure 15: Linkage Piece 1
Figure 16: Linkage Piece 2
Figure 17: Linkage Piece 3
Figure 18: Linkage Piece 4
Figure 19: Linkage Piece 5
6.4 Electronics

In figure 20, $C_1 = 0.1\ \mu\text{F}$.

Figure 20: Wrist Electronics
In figure 21, C1 = 1.0 \mu F.
7 Conclusion and Future Work

The wrist outlined here is currently in use in the GRASP lab. Projects using the wrist include “Teleprogramming: Towards Delay-Invariant Remote Manipulation” [2] and “Robotic Exploration of Surfaces with a Compliant Wrist Sensor” [4]. The wrist has been shown to be a useful force/torque sensor for hybrid position/force control implementations.

Planned work includes design of improved electronics, and shortening the wrist by 1/2". Future work includes a more accurate analysis of the compliance, a dynamic model of the wrist, and research into potentiometers with better characteristics for the wrist.

References

