On Conjunctive Normal Form Satisfiability

Jon Freeman
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/339
For more information, please contact repository@pobox.upenn.edu.
On Conjunctive Normal Form Satisfiability

Abstract
This paper focuses on algorithms that solve CSAT (conjunctive normal form satisfiability) by searching for a satisfying truth assignment for the given formula F. We identify four basic ways to improve the basic search procedure: constraint propagators, simplifying transformations, heuristics, and other miscellaneous improvements. In each of these categories, we survey the existing improvements and suggest new ones. We lower the average time it takes to perform the simplest kind of constraint propagation from $O(L)$ to $O(L/P)$, where L is the length of F and P is the number of propositions in F; this is optimal. We lower the current upper bound for CSAT from $O(2^{0.128L})$ to $O(2^{0.128(L-N)})$, where N is the number of clauses in F. Finally, we experimentally determine the fastest possible algorithm with respect to each of the basic improvements we consider.

Comments
On Conjunctive Normal Form Satisfiability

MS-CIS-91-94

Jon Freeman

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104-6389

November 1991
On Conjunctive Normal Form Satisfiability

Jon Freeman
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

November 1991

Abstract
This paper focuses on algorithms that solve CSAT (conjunctive normal form satisfiability) by searching for a satisfying truth assignment for the given formula F. We identify four basic ways to improve the basic search procedure: constraint propagators, simplifying transformations, heuristics, and other miscellaneous improvements. In each of these categories, we survey the existing improvements and suggest new ones. We lower the average time it takes to perform the simplest kind of constraint propagation from $O(L)$ to $O(L^2)$, where L is the length of F and P is the number of propositions in F; this is optimal. We lower the current upper bound for CSAT from $O(2^{0.128L})$ to $O(2^{0.128(L-N)})$, where N is the number of clauses in F. Finally, we experimentally determine the fastest possible algorithm with respect to each of the basic improvements we consider.

1 Introduction

This paper focuses on algorithms that solve CSAT1 (conjunctive normal form satisfiability) by searching for a satisfying truth assignment for the given formula F.2. We identify four basic ways to improve the basic search procedure: constraint propagators, simplifying transformations, heuristics, and other miscellaneous improvements. In each of these categories, we survey the existing improvements and suggest new ones. We lower the average time it takes to perform the simplest kind of constraint propagation from $O(L)$ to $O(L^2)$, where L is the length of F and P is the number of propositions in F; this is optimal. (By average, we mean averaged over any path through the search tree for F.) We lower the current upper bound for CSAT from $O(2^{0.128L})$ to $O(2^{0.128(L-N)})$, where N is the number of clauses in F.

1 "CSAT" is not standard notation. My inspiration for this notation comes from page 328 of Hopcroft and Ullman [18].

2 We will focus exclusively on algorithms that yield exact solutions, ignoring the extensive body of research on approximation algorithms for CSAT and other NP-hard problems.
Finally, we experimentally determine the fastest possible algorithm with respect to each of the basic improvements we consider.

There are several reasons why I have chosen to study CSAT. First, CSAT is NP-complete—in fact, it was the first problem proven to be NP-complete [4]. Second, CSAT is the simplest kind of constraint satisfaction problem (CSP), and we can convert CSP’s to CSAT problems in polynomial time [40], so some of the complexity results for CSAT are applicable to all CSP’s. Third, relatively little research has been done on CSAT per se; most researchers in this area have chosen to focus on CSP’s in general. Fourth, many important problems reduce directly to CSAT, such as graph coloring, first-order theorem proving, VLSI chip design, and some problems in computer vision [5, 13, 20]. And fifth, CSAT algorithms can take advantage of properties of Boolean algebra that the more general CSP algorithms cannot.

There is probably no one best CSAT algorithm, for two reasons. First, algorithms for larger CNF formulas require more cleverness than algorithms for smaller ones do; in fact, for reasonably sized CNF formulas, a brute-force approach is usually best. Consequently, this paper focuses on CSAT algorithms for larger CNF formulas. Second, some CNF formulas are actually instances of CSP’s that have been compiled down to the propositional calculus. These expressions have special properties that we can take advantage of [40]; see Section 11.

2 Definition of CSAT

A proposition (or Boolean variable) is a variable that can be either true or false (denoted by T and F, respectively). A literal l is either a proposition (say, p) or the complement of one (denoted by $\neg p$); in the first case, we say that l is a positive literal, and in the second, we say that l is a negative literal. We say that p is the proposition associated with l if either $l \equiv p$ or $l \equiv \neg p$. A clause is a disjunction of literals associated with unique propositions. A propositional formula is in conjunctive normal form (CNF) if it is a conjunction of unique

3 To be fair, I should add that CSP algorithms can take advantage of some results of graph theory that CSAT algorithms cannot.
clauses. For example,

\[(p \lor r \lor \neg s) \land (\neg q \lor \neg r) \land (\neg p \lor s) \land (q \lor \neg r \lor s)\]

is in CNF, where \(p, q, r,\) and \(s\) are propositions.

A truth assignment \(v\) is a partial function from the set of propositions to \(\{T, F\}\). We can extend the definition of \(v\) in a natural way so that it assigns truth values to literals, clauses and formulas. For a literal \(l\), if \(l \equiv p\), then \(v(l) = v(p)\), otherwise \(v(l) = \neg v(p)\). For a clause \(C \equiv \bigvee_{i=1}^{n} l_i\), \(v(C) = \bigvee_{i=1}^{n} v(l_i)\). For a formula \(F \equiv \bigwedge_{j=1}^{n} C_j\), \(v(F) = \bigwedge_{j=1}^{n} v(C_j)\). If \(\ast\) represents either a proposition, literal, clause, or formula, we say that \(v\) satisfies \(\ast\) if \(v(\ast) = T\), and \(v\) falsifies \(\ast\) if \(v(\ast) = F\). Note that \(v\) need not assign a truth value to every proposition in \(F\) in order to satisfy (or falsify) \(F\); this makes no difference in practice.

Since \(v\) is a partial function, we will say that formulas, clauses, literals, and propositions can have one of three possible truth values with respect to \(v\): \(T\), \(F\), or indeterminate (denoted by \(I\)). Also, when we are discussing a truth assignment \(v\) in the context of a particular formula \(F\), we will assume that the domain of \(v\) is restricted to the set of propositions in \(F\). Gallier provides a formal proof of the validity of this assumption [13].

The CNF-satisfiability problem (CSAT) is defined as follows [18]: Given a propositional formula \(F\) in CNF, is there a truth assignment \(v\) that satisfies \(F\)?

3 Other Definitions and Notation

When trying to solve CSAT, we always start with an empty truth assignment. Let us call this truth assignment \(v_e\).

We will frequently want to extend an existing truth assignment by a proposition–truth value pair. Given a truth assignment \(v\), proposition \(p\), and truth value \(T\), we define \(v[p \leftarrow T]\) as follows:

\[v[p \leftarrow T](q) = \begin{cases} T & \text{if } p \equiv q \\ v(q) & \text{otherwise} \end{cases}\]

Given a literal \(l\) and truth value \(T\), we can also define \(v[l \leftarrow T]\) in the obvious way:

\[v[l \leftarrow T] = \begin{cases} v[p \leftarrow T] & \text{if } l \equiv p \text{ for some } p \\ v[p \leftarrow \neg T] & \text{if } l \equiv \neg p \text{ for some } p \end{cases}\]
Here are some parameters that we will use in our complexity analyses. Given a formula F, $L(F)$ is the length of F, i.e., the number of literals in F; $P(F)$ is the number of distinct propositions in F; and $N(F)$ is the number of clauses in F. When F is understood from context, we will refer to these parameters as L, P, and N respectively. We have the following simple relationships among these parameters:

- $L > 2N$, because every clause should have length at least 2 (see Section 10.2), and at least one clause should have length greater than 2—otherwise we could satisfy F in polynomial time [11].

- $L \geq 2P$, because every proposition should occur at least twice in F, once as a positive literal and once as a negative literal, otherwise we could simplify F immediately; see Section 10.4.

- $L \leq NP$, because no clause can have more than P literals.

4 History and Related Work

The Davis-Putnam procedure is the first widely known CSAT algorithm [5][1]. Other CSAT algorithms include [37] and [40].

Montanari defined constraint satisfaction problems [26]. Mackworth provides an excellent overview of the field of constraint satisfaction [20]. There is a close relationship between CSP’s and truth maintenance systems: de Kleer explores this relationship in detail [7], and Martins provides a bibliography of recent publications that are relevant to both fields [22].

Bitner and Reingold were the first to articulate general principles of backtracking search [2]. Stallman and Sussman invented dependency-directed backtracking [35]. Gaschnig invented another intelligent version of backtracking called backmarking [15]. Purdom et al. invented multi-level dynamic search rearrangement [32], which is a particular kind of constraint propagation algorithm [40].

A great deal of work has been done on the complexity of backtracking search. Due to the nature of the topic, most of these studies have both theoretical and empirical components.

4 The Davis-Putnam procedure was actually invented about 50 years before Davis and Putnam, by L. Löwenheim [3].
Studies of a more theoretical nature include [17, 27, 31, 37]; studies of a more empirical nature include [9, 16, 31, 32]; and studies in which both components are significant include [15, 19, 30]. The best known upper bound for CSAT is $O(2^{0.128L})$, due to Allen van Gelder [37].

5 Solution Strategies

There are five main ways to solve CSAT (exactly) for a given CNF-formula F; only the last three are widely used.

1. Enumerate all possible truth assignments and check each one to see whether it satisfies F.

2. Show directly that F is a contradiction by simplifying F completely and then checking whether the resulting formula is equal to ⊥ (logical falsehood). If so, answer no, else answer yes.

3. Show directly that F is unsatisfiable by using the resolution method.

4. With the aid of a theorem prover, show directly that the complement of F (a disjunctive normal form expression) is valid. If so, answer no, else answer yes.

5. Show directly that F is satisfiable by searching through the space of possible truth assignments for F.

The first approach takes time $\Theta(2^F)$; the second is not even known to be in NP [13]. The resolution method is due to Robinson [33], and was studied extensively by Galil [12]. Theorem proving is a rich field; Gallier gives references for theorem proving, and provides a good introduction to both theorem proving and resolution [13]. We will focus exclusively on the last approach.
6 The Basic Algorithm

The basic algorithm is to do a depth-first search through the space of all possible truth assignments until we either succeed or fail.\(^5\)

Function Brute-Force\((F, v) = \)

\[
\begin{align*}
\text{case } v(F) \text{ of} \\
T &\Rightarrow (\text{true, } v) \\
F &\Rightarrow (\text{false, } v) \\
I &\Rightarrow \text{let } l = \text{an indeterminate literal in the indeterminate clauses of } F, \\
&\quad (\text{bool, } v') = \text{Brute-Force}(F, v[l \leftarrow T]) \\
&\quad \text{in if } \text{bool} \text{ then (true, } v') \text{ else } \text{Brute-Force}(F, v[l \leftarrow F]); \\
&\text{end;}
\end{align*}
\]

Initially, we call Brute-Force with \(F\) and \(v_0\).

Since CSAT is defined as a decision problem, we do not have to return the truth assignment, but in practice, it would be silly not to do so.

7 Improvements to the Basic Algorithm

When we speak of improvements to CSAT, we must be careful. Some “improvements” will unconditionally decrease the algorithm’s running time, but others will decrease the size of the search space at the expense of extra computation, and whether the decrease in the one is worth the increase in the other is not immediately obvious.\(^6\) Having said this, there are four main ways to improve the basic algorithm: constraint propagators, simplifying transformations, heuristics, and other miscellaneous improvements. Below, we briefly describe these categories; we will discuss each one in much more detail in the sections that follow.

- A constraint propagator is a function that takes a formula \(F\) and a truth assignment \(v\) and returns a truth assignment \(v'\) such that \(v \subseteq v'\) and we can satisfy \(F\) by extending \(v'\) if and only if we can satisfy \(F\) by extending \(v\). In other words, a constraint propagator finds additional assignments of truth values to variables that necessarily follow from

\(^5\) I will write my pseudo-code in an ML-like functional style. I will occasionally use imperative constructs when they express more clearly the operation in question.

\(^6\) In Section 17, we will reach some conclusions about which improvements are genuine and which are not.
what we know about F and v. Constraint propagation is due to Montanari [26]. It goes by many other names in the literature, including “discrete relaxation, domain elimination, range restriction, filtering, and full-forward look-ahead algorithms” [20].

- A simplifying transformation is just that: a function that takes a formula F and returns a simpler formula F' such that F' has a satisfying truth assignment if and only if F does. Most of these transformations are based on properties of Boolean algebra, and thus are not applicable to CSP’s in general.

In order to understand how simplifying transformations work, we must define the notion of purging. Given a formula F and a truth assignment v such that $v(F) = 1$, the purged version of F is the formula that contains the indeterminate clauses in F and the indeterminate literals in those clauses. Let us call the function that returns this formula $\text{Purge}(F, v)$. It should be clear that we can satisfy F by extending v if and only if we can satisfy $\text{Purge}(F, v)$ by extending v_e. Purging can be either explicit or implicit. Explicit purging involves repeatedly replacing (F, v) with $(\text{Purge}(F, v), v_e)$ at every node in the search tree, and implicit purging does not—$\text{Purge}(F, v)$ is always implicit in F and v, hence the name.

There are two reasons why purging is of interest to us. First, we must purge an indeterminate formula before applying a simplifying transformation to it, as these transformations only affect a formula’s indeterminate “core”. Second, we can think of explicit purging as a simplifying transformation in its own right; if we shrink our representation of F, subsequent operations on F will be that much faster. The biggest problem with explicit purging is that it may yield duplicate clauses, but duplicate clauses do not affect the correctness of any of our search algorithms\footnote{They do, however, affect the correctness of one of our heuristics; see Section 11.}, and they are surely not worth the quadratic time it takes to remove them.

Explicit purging and other simplifying transformations are both used in [5] and [37], although neither paper refers to them as such.

- A heuristic h is a function that takes a formula F, a truth assignment v, and an indeterminate literal l in F and returns a positive integer. This integer is an upper
bound on the size of the subtree that would result from recursively calling the search procedure with \(v[l \leftarrow T] \). If \(h \) somehow determines that extending \(v \) by \((l, T)\) will always lead to an inconsistency, it returns a failure condition. (It need not make this determination for all such literals, however.)

A heuristic gives us the ability to choose a good indeterminate literal to satisfy next without having to actually explore the subtrees associated with these literals. Obviously, the running time of the heuristic should be substantially smaller than the time it takes to explore these subtrees.

Heuristics are ubiquitous in search algorithms. Bitner and Reingold were probably the first to describe heuristics for CSAT algorithms [2]. Zabih and McAllester describe a heuristic that works well for CNF formulas containing a large proportion of binary clauses [40] (see Section 11).

- The miscellaneous improvements are hard to categorize, and are not worth listing here; see Section 12.

8 Static Search versus Dynamic Search

Static search algorithms for CSAT are algorithms that do not use heuristics to guide their search. They may do some preprocessing on the formula \(F \) before starting the search, and they may use a constraint propagator during the search, but they satisfy the literals in \(F \) strictly from left to right. Dynamic search algorithms, on the other hand, do use heuristics to guide their search; the order in which they satisfy the literals in \(F \) is hard to predict.

Below are two templates that show the general form of static and dynamic search algorithms, respectively. These templates show exactly where each kind of algorithm uses the improvements described above.

Function Static-Template(\(F \)) =
let \(F' = F \) with zero or more simplifying transformations applied to it
in Static-Loop(\(F' \), \(v_e \))
end;

Function Static-Loop(\(F \), \(v \)) =
let \(v' = v \) with a constraint propagator applied to it
in case $v'(F)$ of
 | $T => (\text{true, } v')$
 | $F => (\text{false, } v')$
 | $I =>$ let $l =$ the leftmost indeterminate literal in the indeterminate clauses of F,
 | $(\text{bool, } v'') =$ Static-Loop($F, v'[l \leftarrow T]$)
 | in if bool then (true, v'') else Static-Loop($F, v'[l \leftarrow F]$)
 end
end;

In the following template, $\text{Apply-Heuristic}(F, v, h)$ is a function that takes a formula F, a truth assignment v, and a heuristic h and returns a indeterminate literal l in the indeterminate clauses of F that, in terms of h, is the best one to satisfy next.

Function $\text{Dynamic-Template}(F) =$
 let $F' =$ F with zero or more simplifying transformations applied to it
 in $\text{Dynamic-Loop}(F', v_e)$
end;

Function $\text{Dynamic-Loop}(F, v) =$
 let $v' =$ v with a constraint propagator applied to it
 in case $v'(F)$ of
 | $T => (\text{true, } v')$
 | $F => (\text{false, } v')$
 | $I =>$ let $F'' =$ Purge(F, v') with one or more simplifying transformations
 | applied to it (or just F for zero transformations),
 | $l =$ $\text{Apply-Heuristic}(F', v', h)$ for some heuristic h,
 | $(\text{bool, } v'') =$ Dynamic-Loop($F', v'[l \leftarrow T]$)
 | in if bool then (true, v'') else Dynamic-Loop($F', v'[l \leftarrow F]$)
 end
end;

9 Constraint Propagators

The basic idea behind a constraint propagator is simple. Suppose that we are trying to satisfy a CNF formula F. If we know that satisfying a certain proposition p in F will yield an inconsistency in every case, then p must be false; similarly, if we know that falsifying p will yield an inconsistency in every case, then p must be true.

Constraint propagators vary in both their accuracy and their running time, depending on how far they look into the future. The simplest constraint propagator merely finds all indeterminate propositions p in F such that assigning some truth value to p immediately
falsifies F. Following Zabih and McAllester, let us call this constraint propagator BCP, for Boolean Constraint Propagation [40]. Here is the pseudo-code for BCP:

Function $\text{BCP}(F, v) =$

let $v' = \text{BCP-Loop}(F, v)$
in if $v = v'$ then v else $\text{BCP}(F, v')$
end;

Function $\text{BCP-Loop}(F, v) =$

for all indeterminate propositions p in the indeterminate clauses of F do
 if $v[p \leftarrow T](F) = F$ then $v := v[p \leftarrow F]$ else
 if $v[p \leftarrow F](F) = F$ then $v := v[p \leftarrow T]$;
return v;

Note that there are no constraints on the way in which we extend the original truth assignment, i.e., the sequence of propositions we choose; no matter how we arrange the propositions in this sequence, the final truth assignment is the same. McAllester provides a formal proof of this assertion [23].

Below is a second version of BCP-Loop, and hence of BCP. The reader can verify that these two algorithms are functionally equivalent, although they may appear to be different at first.

Function $\text{BCP-Loop2}(F, v) =$

for all indeterminate clauses C in F do
 if C contains exactly one indeterminate literal l then $v := v[l \leftarrow T]$;
return v;

A generalized version of the first algorithm for BCP is widely used in solving CSP’s. To wit, if a variable can have any of n possible values, where $n > 2$, and we know somehow that $n - 1$ of those values will always lead to an inconsistency, then that variable must have the nth value.

The running time of a constraint propagator clearly depends on the amount of lookahead it does. Since BCP does the smallest amount of lookahead, we had better be able to perform it quickly. David McAllester showed how to perform BCP in time $O(P)$ [23]. This seems optimal, since we can never extend a truth assignment more times than there are propositions. It turns out, however, that the optimal running time of BCP is actually

6 I will explain later why I chose to write BCP-Loop as a separate function.
smaller, for consider the operation of BCP down any path of the search tree for F. The length of any such path is $O(P)$. In the worst case, every clause in F will become eligible for BCP, so we must keep track of each clause’s eligibility status. In order to do this, we must keep track of the truth value of each literal occurrence in F, which takes time $\Omega(L)$. Therefore the optimal time bound for BCP is $O\left(\frac{L}{P}\right)$, averaged over any path through the search tree for F. We present an algorithm that matches this bound in Section 14.1.2.

The next logical step up from BCP is the following constraint propagator, called BCP2 [40].

Function $\text{BCP2}(F, v) =$

\[
\text{let } v' = \text{BCP2-Loop}(F, v) \\
\text{in if } v = v' \text{ then } v \text{ else } \text{BCP2}(F, v')
\]

end;

Function $\text{BCP2-Loop}(F, v) =$

\[
\text{for all indeterminate propositions } p \text{ in the indeterminate clauses of } F \text{ do} \\
\text{if } \text{BCP}(F, v[p \leftarrow \text{T}]) = F \text{ then } v := v[p \leftarrow F] \text{ else} \\
\text{if } \text{BCP}(F, v[p \leftarrow F]) = F \text{ then } v := v[p \leftarrow \text{T}]; \\
\text{return } v;
\]

If we implement BCP2 exactly as we have described it here, it will take far too much time to be worthwhile. We can use special data structures, etc., to decrease BCP2's running time, but even with these improvements in place, BCP2 still appears to be too slow to merit serious consideration [40]. We will not discuss BCP2 any further.

Instead of having to settle for either BCP or BCP2, we can compromise. Suppose we have a fast constraint propagator $\text{Fast-BCP}(F, v)$ that operates in much the same way that BCP does, but takes less time and is less powerful. Then we can define an intermediate constraint propagator, called BCP-Plus, as follows:

Function $\text{BCP-Plus}(F, v, \text{Fast-BCP}) =$

\[
\text{let } v' = \text{BCP-Plus-Loop}(F, v, \text{Fast-BCP}) \\
\text{in if } v = v' \text{ then } v \text{ else } \text{BCP-Plus}(F, v', \text{Fast-BCP})
\]

end;

Function $\text{BCP-Plus-Loop}(F, v, \text{Fast-BCP}) =$

\[
\text{for all indeterminate propositions } p \text{ in the indeterminate clauses of } F \text{ do} \\
\text{if } \text{Fast-BCP}(F, v[p \leftarrow \text{T}]) = F \text{ then } v := v[p \leftarrow F] \text{ else} \\
\text{if } \text{Fast-BCP}(F, v[p \leftarrow F]) = F \text{ then } v := v[p \leftarrow \text{T}]; \\
\text{return } v;
\]
Since Fast-BCP is an argument to BCP-Plus, the running time of BCP-Plus can fall anywhere between the running times of BCP and BCP2.

We close this section by providing three examples of fast constraint propagators for BCP-Plus.

1. BCP-Loop applied a constant number of times. (This is why I defined BCP-Loop separately.)

2. BCP applied to the binary clauses in F, i.e., the clauses of length two. This constraint propagator is not much faster than BCP when F contains lots of binary clauses, and as I mentioned earlier, compiled CSAT formulas typically contain a large fraction of binary clauses.

3. BCP applied to $\frac{1}{n}$ of the clauses in F, where n can vary. The clauses are chosen at random from F.

10 Simplifying Transformations

The following subsections describe a total of seven simplifying transformations. We can apply most of them dynamically, but the main question is whether we should. As the templates given above suggest, we can also apply them to F before we start the search, but in practice, this usually does little or nothing for us unless F is more or less random, i.e., it is not a compiled version of a CSP.

10.1 Explicit Purging

As I mentioned earlier, we can think of explicit purging as a simplifying transformation in its own right, as it shrinks the representation of F, and hence makes subsequent operations on F that much faster. We will show how to perform explicit purging in linear time.

10.2 The Unit Clause Rules

A unit clause is a clause containing exactly one literal. The unit clause rules are from Davis and Putnam [5]. They are the following identities of Boolean algebra:
where \(l \) is a literal and \(C' \) is a subclause.

If by applying the second rule, we manage to completely eliminate one or more of the clauses in \(F \), then \(F \) is a contradiction; for example, consider the formula \(\overline{a} \land \overline{b} \land (a \lor b) \).

Note that the unit clause rules are the same as BCP, but with respect to \emph{explicitly} purged formulas. If we intend to apply BCP to \(F \) at every node of the search tree, then this transformation is clearly redundant.

10.3 Partial Simplification

Partial simplification is an extension of the idea behind the unit clause rules: we apply a set of Boolean identities to \(F \). The identities we choose to apply naturally influence the running time of this transformation. Experimentation has shown that the only identities we can apply in a reasonable amount of time are the simplest ones, namely these:

\[
l \land \lnot l = \bot
\]
\[
F' \land \bot = \bot
\]
\[
l \lor \lnot l = \top
\]
\[
C' \lor \top = \top
\]
\[
F' \land \top = F'
\]
\[
l \land (l \lor C') = l \quad \text{(the first unit clause rule)}
\]
\[
l \land (\lnot l \lor C') = l \land C' \quad \text{(the second unit clause rule)}
\]

where \(l \) is a literal, \(C' \) is a subclause, and \(F' \) is a subformula.

Again, if we are running BCP at every node, we would not want to apply this transformation dynamically either.

10.4 The Positive and Negative Rules

These two rules first appeared in Davis and Putnam, where they were collectively referred to as the affirmative-negative rule [5]. The idea is that if a proposition \(p \) in \(F \) occurs only as a positive literal \(p \), then we can make \(p \) true and delete all clauses containing \(p \) from \(F \).
Similarly, if \(p \) only occurs as a negative literal \(\neg p \), then we can make \(p \) false and delete all clauses containing \(\neg p \) from \(F \).

We can apply this transformation dynamically; consider the following formula:

\[
(a \lor \bar{b} \lor c) \land (a \lor \bar{c}) \land (\bar{a} \lor b \lor c)
\]

Every proposition in this formula has both positive and negative occurrences, but if we make \(b \) true, we can immediately make \(a \) true (since the last clause disappears).

10.5 Elementary Resolution

This transformation is from Davis and Putnam as well [5]. Let \(p \) be a proposition that occurs exactly twice in \(F \), once as a positive literal and once as a negative literal, i.e., we can write \(F \) as

\[
(p \lor C_1) \land (p \lor C_2) \land F'
\]

where \(C_1 \) and \(C_2 \) are subclauses, \(F' \) is a subformula, and \(C_1, C_2, \) and \(F' \) are all free of \(p \). Then we can replace \(F \) by

\[
(C_1 \lor C_2) \land F'.
\]

The idea behind this transformation is simple. We know that \(p \) must be either true or false. If we make \(p \) true, then \(\text{Purge}(F, v) = C_2 \land F' \), and if we make \(p \) false, then \(\text{Purge}(F, v) = C_1 \land F' \). Taking the disjunction, we obtain the new version of \(F \).

We may have to apply this transformation in stages, searching for eligible propositions over and over. For example, consider the following formula:

\[
(a \lor b \lor \neg c \lor d) \land (\neg b \lor \neg c \lor d \lor e) \land (a \lor c \lor e) \land (\neg a \lor \neg d \lor \neg e)
\]

We can only apply elementary resolution to \(b \), but after we do so, we can then apply it to both \(c \) and \(d \), etc.

In certain cases, we may be able to reduce \(F \) down to the null formula. If this happens, we can conclude that \(F \) is satisfiable, although of course we cannot say exactly how.

We can apply this transformation dynamically; in the following formula, for example,

\[
(\neg a \lor c \lor d) \land (\neg a \lor \neg b \lor \neg d) \land (b \lor \neg c \lor \neg d) \land (a \lor \neg b \lor c) \land (\neg a \lor b \lor d)
\]
we cannot apply elementary resolution at all, but if we make a true, then we can apply it to c (since the fourth clause is not present in $\text{Purge}(F,v)$).

10.6 Mixed Collapsibility

Mixed collapsibility is due to Allen van Gelder [37]. The basic idea is this: Consider two propositions p and q in F, and let l_p and l_q be literals (either positive or negative) containing p and q respectively. If for every clause C in F, $l_p \in C \Rightarrow l_q \in C$, and $\neg l_p \in C \Rightarrow \neg l_q \in C$, then we say that p collapses into q, and we delete all the clauses in F containing p. Intuitively, we let the truth value of l_p equal the complement of the truth value of l_q (whatever it may be), which immediately satisfies every clause containing p.

We can apply this transformation dynamically. Consider the following formula:

$$(a \lor b \lor \neg c \lor d) \land (\neg b \lor d) \land (\neg a \lor \neg b \lor \neg c) \land (a \lor c \lor \neg d)$$

We cannot apply mixed collapsibility to this formula, but if we make c true, then a collapses into b (since the last clause disappears).

10.7 Splitting Into Blocks

Suppose we can partition F into disjoint sets of clauses (or blocks) such that no two blocks have any propositions in common. Then we can satisfy these blocks independently.

For every CNF formula F, we define an undirected graph $G(F)$ (or simply G) as follows\(^9\). There are P vertices in G, each labeled with a proposition p in F. There is a path between two vertices p and q in G if and only if two literals l_p and l_q both occur in at least one clause in F, where l_p and l_q contain p and q, respectively. (We need only $n - 1$ edges for each n-literal clause in order to ensure that this condition holds.) It should be clear that the blocks of F correspond to the connected components of G. Furthermore, we can find these connected components by doing a depth-first search of G.

The running time of this transformation is the time it takes to construct G, find its connected components, and break F into blocks. We can construct G from a CNF-formula F in time $O(L \log P)$; in Section 14, however, we will describe a special data structure that

\(^9\) Our construction of $G(F)$ launches us into the realm of CSP graphs. Dechter and Pearl have obtained several useful heuristics for CSP's by studying these kinds of graphs [9].
represents both F and v, from which we can construct G in time $O(L)$. The running time of depth-first search is $O(V + E)$, where V is the number of vertices in G and E is the number of edges; V is $O(P)$ and E is $O(L)$, so this is just $O(P + L) = O(L)$. Finally, we can break F into blocks in time $O(N)$. Therefore the total running time is $O(L + L + N) = O(L)$, given the special data structure I just alluded to.

We can certainly apply this transformation dynamically. Consider the following formula:

$$(a \lor b \lor \neg d) \land (\neg a \lor \neg c) \land (a \lor b \lor c) \land (\neg b \lor \neg c) \land (d \lor \neg e \lor g) \land (f \lor \neg g) \land (e \lor \neg f \lor g) \land (\neg d \lor \neg e \lor f)$$

We cannot split this formula into blocks, but if we make d true, we can split it into the group of clauses containing a, b, and c and the group containing e, f, and g.

There are several reasons why this transformation should interest us. First, we can perform it in linear time. Second, we can satisfy the resulting blocks in parallel, if we wish. And third, this transformation greatly reduces the likelihood of thrashing, the bane of all backtracking algorithms [6, 20, 35, 36]. Thrashing occurs when a search algorithm backtracks to a variable that has nothing to do with the cause of the backtracking. The algorithm will backtrack to this variable repeatedly, trying every possible value for it and encountering the same unrelated inconsistency over and over again. By splitting F into blocks, we increase the likelihood that every literal we backtrack to is somehow responsible for the inconsistency we have just encountered. In particular, F is a contradiction if and only if at least one of its blocks is a contradiction, so this transformation can isolate the "contradictory" part of F and make it easier to detect.

11 Heuristics

Once again, a heuristic h is a function that takes a formula F, a truth assignment v, and a literal l in F and returns an upper bound on the size of the subtree that would result from recursively trying to satisfy F with $v[l \leftarrow T]$.

Let us denote by $\text{Ind-Props}(F, v)$ the number of indeterminate propositions in the indeterminate clauses of F with respect to the truth assignment v. Then $2^{\text{Ind-Props}(F, v)}$ is clearly an upper bound on the size of the remaining search tree; in the worst case, we
might have to make every such proposition both true and false. Let us call this number Basic-Estimate\((F, v)\).

The number of heuristics one can think of is quite large: a heuristic can consist of a constraint propagator and one or more simplifying transformations. However, a heuristic must be both quick and accurate, otherwise a brute-force strategy will easily outperform it on reasonably sized problems. I have chosen three heuristics that I feel have a good chance of meeting these criteria. Here they are, listed in decreasing order with respect to both accuracy and computational overhead:

1. Let \(v' = \text{BCP}(F, v[l \leftarrow \text{T}])\). If \(v'(F) = \text{T}\), return a cost of 0. If \(v'(F) = \text{F}\), return a failure condition. Otherwise, let \(F' = \text{Purge}(F, v')\); break \(F'\) into blocks and return the sum of the basic estimates for each block.

Note that calculating this heuristic involves doing a depth-first search for each literal under consideration, a rather costly proposition [sic]. So why should we believe that this heuristic might be useful? Because this heuristic finds the articulation points of the graph \(G\) defined earlier—the literals in \(F\) that, when satisfied, break \(F\) up as much as possible.

2. Let \(v' = \text{BCP}(F, v[l \leftarrow \text{T}])\). If \(v'(F) = \text{T}\), return a cost of 0. If \(v'(F) = \text{F}\), return a failure condition. Otherwise, return Basic-Estimate\((F, v')\), i.e., do not break \(F\) into blocks.

3. A binary clause is a clause that contains exactly two literals. Let \(\text{Open-Binaries}(F, v, l)\) be the number of binary clauses \(C\) in \(F\) such that both literals in \(C\) are indeterminate and \(l \in C\). Return \(2^{\text{Ind-Props}(F, v) - \text{Open-Binaries}(F, v, \neg l)}\).

This heuristic is due to Zabih and McAllester [40]. Intuitively, the idea is that when we make \(l\) true, every binary clause containing \(\neg l\) becomes eligible for BCP, decrementing the number of propositions we might have to consider. We can think of this heuristic as applying a special kind of fast constraint propagator to \(v\), namely one that takes the literal \(l\) as an argument.

This heuristic works well when \(F\) contains a large proportion of binary clauses, which
is usually the case when F is a compiled version of a CSP [40]. It does not work correctly when F contains duplicate clauses (as a result of explicit purging).

Zabih and McAllester developed this heuristic primarily because their own version of BCP was too slow to be part of a practical heuristic [40]. Since our version of BCP runs in sublinear time on the average, it seems that it should be useful in a heuristic. We will see, however, that this conjecture is not correct, either in theory or in practice.

We will analyze the running times of all three heuristics in Section 15 and compare them experimentally in Section 17.

12 Miscellaneous Improvements

Now that we have examined the three main kinds of improvements, we turn our attention to some other improvements that, while harder to categorize, can still decrease the search time quite a bit.

1. Most CSAT algorithms jump from one indeterminate literal to the next, regardless of where these literals occur [5, 32, 37]. If we jump from one indeterminate clause to another, however, we are effectively looking farther into the search tree. In terms of the search algorithm, this is what we do: We extend the notion of the cost of a literal with respect to a heuristic h to clauses by defining the cost of an indeterminate clause to be the sum of the costs of its indeterminate literals. We select the clause having the minimum total cost and try to satisfy it by repeatedly trying to satisfy each of its indeterminate literals until we have satisfied at least one.

This improvement is due to Zabih and McAllester [40]. It immediately leads to three others.

2. After we pick an indeterminate clause C to satisfy, we should not try to satisfy its indeterminate literals in any order; instead, we should try to satisfy them in increasing order with respect to their estimated subtree size. Since we already know these sizes, all we have to do to put this improvement into practice is sort the indeterminate literals in the winning clause with respect to these sizes. This operation may appear
to increase Apply-Heuristic's running time, but we will show in Section 14.1.2 that it does not increase its average running time down any path of the search tree.

To understand the next two improvements, note that our heuristics 1 and 2 can occasionally detect when a literal l always leads to an inconsistency; heuristic 3 does not have this property \[40\]. Let us call these literals failed literals, and all other literals viable literals.

3. In procedure Apply-Heuristic, we should not consider the failed literals in F when determining which indeterminate clause to satisfy next. More specifically, we should base the cost of each indeterminate clause on the costs of its viable literals, and after we determine a winning clause, we should only sort and return the viable literals in that clause.

4. If, in procedure Apply-Heuristic, we encounter at one or more indeterminate clauses that contain nothing but failed literals, then we know that there is no way that we can satisfy F, given the current truth assignment. In this case, we should return an empty list.

Given these improvements, our static and dynamic templates now look like this\[10\]:

Function Static-Template(F) =
 let F' = F with zero or more simplifying transformations applied to it
 in Static-Loop1(F', v, \emptyset)
end;

Function Static-Loop1(F, v, $lits$) =
 if $lits = \emptyset$ then
 let $lits'$ = the indeterminate literals in the leftmost indeterminate clause of F
 in Static-Loop1(F, v, $lits'$)
 else
 let $(l::rest) = lits$,
 $(bool, v') = $ Static-Loop2(F, $v[l \leftarrow T]$, \emptyset)
 in if $bool$ then (true, v') else Static-Loop2(F, $v[l \leftarrow F]$, $rest$)
 end;

Function Static-Loop2(F, v, $lits$) =

\[10\] It may be instructive to compare these templates to the templates in Section 8.
let \(v' = v \) with a constraint propagator applied to it
in case \(v'(F) \) of
\[
\begin{align*}
&T \Rightarrow (\text{true}, v') \\
&F \Rightarrow (\text{false}, v') \\
&I \Rightarrow \text{let } \text{lits}' = \text{the literals } l \text{ in lits such that } v'(l) = I \\
&\quad \text{in Static-Loop1}(F, v', \text{lits}') \quad \text{end}
\end{align*}
\]
end;

\[
\begin{align*}
&\text{Function Dynamic-Template}(F) = \\
&\quad \text{let } F' = F \text{ with zero or more simplifying transformations applied to it} \\
&\quad \text{in Dynamic-Loop1}(F', v_e, []) \quad \text{end};
\end{align*}
\]

\[
\begin{align*}
&\text{Function Dynamic-Loop1}(F, v, \text{lits}) = \\
&\quad \text{if lits} = [] \text{ then} \\
&\quad \quad \text{let } \text{lits}' = \text{Apply-Heuristic}(F, v, h) \text{ for some heuristic } h \\
&\quad \quad \text{in if lits}' = [] \text{ then (false, } v) \text{ else Dynamic-Loop1}(F, v, \text{lits}') \quad \text{end} \\
&\quad \text{else} \\
&\quad \quad \text{let } (l::\text{rest}) = \text{lits}, \\
&\quad \quad \quad (\text{bool, } v') = \text{Dynamic-Loop2}(F, v[l \leftarrow \text{ T}], []) \\
&\quad \quad \text{in if bool then (true, } v') \text{ else Dynamic-Loop2}(F, v[l \leftarrow \text{ F}], \text{rest}) \quad \text{end} \\
&\quad \text{end};
\end{align*}
\]

\[
\begin{align*}
&\text{Function Dynamic-Loop2}(F, v, \text{lits}) = \\
&\quad \text{let } v' = v \text{ with a constraint propagator applied to it} \\
&\quad \text{in case } v'(F) \text{ of} \\
&\quad \quad T \Rightarrow (\text{true}, v') \\
&\quad \quad F \Rightarrow (\text{false}, v') \\
&\quad \quad I \Rightarrow \text{let } F' = \text{Purge}(F, v') \text{ with one or more simplifying transformations} \\
&\quad \quad \quad \text{applied to it (or just } F \text{ for no transformations)}, \\
&\quad \quad \quad \text{lits}' = \text{the literals } l \text{ in lits such that } v'(l) = I \\
&\quad \quad \text{in Dynamic-Loop1}(F', v', \text{lits}') \quad \text{end} \\
&\quad \text{end};
\end{align*}
\]

\section{An Ordering for Static Search}

In the static search algorithms, we satisfy both the clauses in \(F \) and the literals within each clause from left to right. We can try to minimize the search time by rearranging the clauses and their literals before we start the search. Since we cannot know in advance which literals
we should satisfy first, all we have to rely on are general principles. In particular, we have
this principle: *Try first where you are most likely to fail* [2, 16]. In other words, the literals
that we should satisfy first are the ones that occur the most often in F. Hence we do the
following. First, we create a occurrence table for F: for each proposition p in F, we count
the number of times p appears in F, either as a positive literal or as a negative literal. Next,
for each clause C in F, we find the sum of the number of occurrences associated with each
literal in C. Finally, we sort the clauses in *decreasing* order with respect to these sums, and
within each clause we sort the literals in *decreasing* order with respect to their associated
number of occurrences.

Let us analyze the running time of this algorithm. We can construct the occurrence
table for F in time $O(L)$. We can find the occurrence count of each clause in time $O(L)$. We
can sort the clauses in time $O(N \log N)$. Finally, we can sort the literals within each
clause in time $O(NP \log P)$. Hence we can rearrange F to take advantage of the fail-first
principle in time $O(L + L + N \log N + NP \log P) = O(NP \log P)$, which is not bad, since
we only have to reorder F once and we may derive substantial benefits from doing so. In
Section 17, we determine experimentally how much of a difference this reordering makes.

In the next two sections, we examine the data structures and low-level procedures of
our CSAT algorithms in much greater detail.

14 Implementing the Basic Operations

This section describes our basic data structure and the basic operations that we perform
on it, and analyzes the running times of these operations. It has two parts. In the first
part, we consider data structures and basic operations for clauses of constant length; in the
second part, we consider them for clauses of arbitrary length. I have split the section up in
this way for pedagogical reasons.

14.1 Implementation for Clauses of Constant Length

We begin by defining a data structure that represents the state of a CSAT algorithm, i.e.,
one that contains information about both F and v.
14.1.1 Data Structures

Let us suppose that we have indexed the clauses in F, say in increasing order from left to right. We define a five-component state vector as follows.

1. The first component is a triple $<true\text{-}cs, false\text{-}cs, ind\text{-}cs>$ called the F-triple, where $true\text{-}cs$, $false\text{-}cs$, and $ind\text{-}cs$ are integers which correspond to the number of true, false, and indeterminate clauses in F respectively.

2. The second component is an integer which corresponds to the number of indeterminate propositions in F. Note that this is not necessarily the same as, and is in fact greater than or equal to, the number of indeterminate propositions in the indeterminate clauses of F.

3. The third component is a stack of integers called the BCP-stack. The integers in this stack are the indices of the clauses in F that are currently eligible for BCP, i.e., those clauses that are indeterminate and contain exactly one indeterminate literal.

4. The fourth component is an array of length N, called the N-array, which contains information about the clauses in F. Each element of this array is a four-tuple $<true\text{-}lits, false\text{-}lits, ind\text{-}lits, litprs>$, where the first three components are integers and the fourth component is a list of (literal, integer) pairs. The first three numbers are the number of true, false, and indeterminate literals in the clause in question, respectively; $litprs$ is a list of pairs of the form $(l, P-index)$, where l is an indeterminate literal in the clause and $P-index$ is the index of l's proposition in the P-array, defined below.

5. The fifth component is an array of length P, called the P-array, which contains information about the propositions in F. The elements of this array are arranged in increasing lexicographic order with respect to the propositions (since propositions are just strings). Each element is a four-tuple $<p, pos\text{-}lits, neg\text{-}lits, T>$, where p is a string, $pos\text{-}lits$ and $neg\text{-}lits$ are lists of integers, and T is either T, F, or I. p is just the proposition itself; $pos\text{-}lits$ contains the indices of all the clauses in F in which the literal p appears; $neg\text{-}lits$ contains the indices of all the clauses in which the literal $\neg p$ appears; and T is, of course, the current truth value of p.

22
The purpose of the state vector, of course, is to store information about \(F \) and \(v \) that is correct at every step in the execution of the search algorithm. We maintain the correctness of this information by updating the state vector every time we extend \(v \) (let us call the function that does this \(\text{Extend-Prop}(v, p, T) \)). BCP takes advantage of the information in the BCP-stack, and this is what makes it run faster. More specifically, whenever a clause in \(F \) becomes eligible for BCP, \(\text{Extend-Prop} \) pushes its index onto the BCP-stack; BCP pops these indices off the stack and processes each one by simply making an appropriate call to \(\text{Extend-Prop} \).

Let us determine how much time it takes to construct the initial state vector for \(F \). It takes time \(O(L \log L) \) to find the set of propositions in \(F \): we sort all of the propositions in \(F \) into increasing lexicographic order in time \(O(L \log L) \) and then remove adjacent duplicates in linear time. Given this set, we can construct the \(P \)-array in time \(O(L \log P) \): we do a binary search of the \(P \)-array for every literal occurrence in \(F \). Finally, we can construct the \(N \)-array in time \(O(N) \) and the remaining three components in constant time, for a bound of \(O(L \log L + L \log P + N) = O(L \log L) \).

14.1.2 Algorithms and Running Times

Next, we show how to use this data structure to perform the basic operations of our CSAT algorithms and analyze the running time of each operation. We describe simple operations before complicated ones.

- To calculate the truth value of any proposition \(p \) in \(F \), given a pair \((p, P\text{-index})\), we simply find the \(P\text{-index} \)th element of the \(P \)-array and return its fourth component. This takes constant time.

- To calculate the truth value of any literal \(l \) in \(F \), given a pair \((l, P\text{-index})\): If \(l \equiv p \) for some proposition \(p \), we return the truth value of \(p \); if \(l \equiv \neg p \) for some \(p \), we return the complement of the truth value of \(p \). This takes constant time as well.

- To calculate the truth value of any clause \(C \) in \(F \), given its index \(C\text{-index} \), we examine the \(C\text{-index} \)th element of the \(N \)-array. If \(\text{true-lits} > 0 \), then \(C \) is true; if \(\text{true-lits} = \text{ind-lits} = 0 \), then \(C \) is false; otherwise, \(C \) is indeterminate. This takes constant time.
To calculate the truth value of F itself, we just examine the F-triple. If $false-cs > 0$, then F is false; if $false-cs = ind-cs = 0$, then F is true; otherwise, F is indeterminate. This takes constant time as well.

To calculate the number of indeterminate propositions in F, we simply return the second component of the state vector in constant time. Note that this number is not necessarily equal to, and may in fact be greater than, $\text{Ind-Props}(F, v)$—the number of indeterminate propositions in the indeterminate clauses of F. $\text{Ind-Props}(F, v)$ provides a better estimate of the remaining search tree size; using our state vector, however, it would take time $O(L)$ to calculate. Given this tradeoff, returning the second component is probably the wiser choice. The main consequence of this difference is that my implementations of the three heuristics in Section 11 do not correspond exactly to the way I defined them.

Procedure Apply-Heuristic needs to have the set of indeterminate literals in the indeterminate clauses in F, written as a list of $(l, P-index)$ pairs. Do construct this list, we run through the P-array. For each tuple of the form $<p, poslits, neglits, I>$, we check if $I = I$. If so, and at least one of the clauses in poslits is indeterminate, we add $(p, P-index)$ to the list, where $P-index$ is the index of the tuple in question; if at least one of the clauses in neglits is indeterminate, we add $(\neg p, P-index)$. This takes time $O(L)$.

To recover the current truth assignment from the state vector as a list of proposition-truth value pairs, we run through the P-array, collecting such a pair for all propositions that are not indeterminate. This takes time $O(P)$.

Next, we turn our attention to the three basic operations that concern us most: Extend-Prop, BCP, and Apply-Heuristic.

To perform Extend-Prop:

Let us assume that we are making a proposition p true. (The case where we are making p false is similar.) We are given the pair $(p, P-index)$. First, we decrement the second component of the state vector, i.e., the number of indeterminate propositions
in F. Then we find the P-indexth element of the P-array (in constant time), i.e., $<p, pos-lits, neg-lits, T>$ (actually, we know that T must be I). We set T to T.

Next, for each C-index in $pos-lits$, we find the C-indexth element of the N-array (in constant time), i.e., $<true-lits, false-lits, ind-lits, lit-list>$. We modify this tuple by incrementing $true-lits$, decrementing $ind-lits$, and deleting $(p, P$-index$)$ from $lit-list$, all in constant time11. If, as a result of these operations, we have satisfied this clause for the first time, we modify the F-triple $<true-cs, false-cs, ind-cs>$ by incrementing $true-cs$ and decrementing $ind-cs$, also in constant time. Finally, for each C-index in $neg-lits$, we find the C-indexth element of the N-array (in constant time). We modify this tuple to record the effects of making the literal $\neg p$ false. If by doing so, we have falsified this clause, we modify the F-triple accordingly; or, if we have made this clause eligible for BCP12 (i.e., $true-lits$ is 0 and $ind-lits$ has become 1), we push the index of this clause onto the BCP stack (in constant time).

Notice that Extend-Prop pushes indices onto the BCP-stack, but it never pops them off of it. This is the responsibility of BCP itself (described below).

Now, consider the operation of Extend-Prop down one path of the search tree for F. Extend-Prop takes constant time to process each index in both $pos-lits$ and $neg-lits$. All of the calls to Extend-Prop will process a total of $O(L)$ such indices, for an average time bound of $O(L)$.\[\text{\textbullet{} To extend the truth assignment } v \text{ by a literal-truth value pair } (l, T), \text{ we determine whether } l \text{ is a positive or a negative literal. If } l \equiv p \text{ for some } p, \text{ we extend } v \text{ by } (p, T); \text{ if } l \equiv \neg p \text{ for some } p, \text{ we extend } v \text{ by } (p, \neg T). \text{ This takes average time } O(L) \text{ as well.}\]

\[\text{\textbullet{} To perform BCP:}\]

First, we pop a clause index off of the BCP-stack. Then we use this index to find the N-array tuple associated with this clause (in constant time), i.e., $<true-lits, false-lits, ind-lits, lit-list>$. We double-check that this clause is in fact still eligible for BCP; if

11 We can delete p from $lit-list$ in constant time because, again, we are assuming that every clause has constant length.

12 There is some equivocation in this discussion between the algorithm for BCP and the procedure that performs it.
not, we go on to the next index in the stack. (Under certain circumstances, it may be possible for a clause to lose its eligibility for BCP while its index is on the BCP-stack.) Now there is exactly one pair \((l, P\text{-index})\) in \textit{litrps}; we call Extend-Prop in the appropriate way to satisfy this literal, and repeat until the BCP-stack is empty. (The point, of course, is that Extend-Prop may add still more indices to the BCP-stack, so the length of the stack need not strictly decrease as we execute BCP.)

Let us analyze the running time of BCP down one path of the search tree for \(F\). The time it takes for BCP to process each index on the BCP-stack is at most the running time of Extend-Prop, or \(O\left(\frac{P}{N}\right)\) on the average. The total number of indices that Extend-Prop will push onto the BCP-stack is \(O(N)\) (at most one index per clause), but BCP will discard some of these indices, as noted above; in fact, the total number of indices for which BCP will call Extend-Prop is \(O(P)\). Hence the average running time of BCP is just \(O\left(\frac{P}{N}\right)\).

- To perform Apply-Heuristic:

Say that the heuristic in question (call it \(h\)) runs in time \(H\). First, we find the set of all indeterminate literals in the indeterminate clauses in \(F\) (described above). Next, we apply \(h\) to each of these literals, creating a table of literal-cost pairs. For each indeterminate clause in \(F\), we find the sum of the costs of all of its indeterminate literals. Finally, we find the clause having the minimum total cost, sort its indeterminate literals by increasing cost, and return this sorted list.

Let us analyze the running time of this procedure. We can find the set of indeterminate literals in \(F\) in time \(O(P)\). We can build the cost table in time \(O(PH)\). Using some additional data structures, we can propagate the information in this table to all of the clauses in \(F\) in time \(O(L)\). We can find the clause with the minimum total cost in time \(O(N)\). And finally, we can sort the literals in the winning clause in time \(O(P \log P)\).

Note, however, that on any one path through the search tree for \(F\), Apply-Heuristic

\footnote{This is actually a bit tricky. My heuristics take a state vector as an argument, and some of them modify this state vector (by performing BCP on it). This seems to indicate that we have to pass a fresh copy of the state vector to the same heuristic for every literal under consideration, which would take time \(\Omega(P^2)\). I got around this problem by recording the changes that a heuristic makes to the state vector for a given literal, and then undoing those changes before proceeding with the next literal. Section 17 discusses a similar modification to the top-level algorithms.}
will return at most P literals, so it will never have to sort more than P literals at once, for a total time bound of $O(P \log P)$, or $O(\log P)$ on the average. Hence the average running time of Apply-Heuristic is $O(P + PH + L + \log P) = O(\max(L, PH))$.

14.2 Implementation for Clauses of Arbitrary Length

In this subsection, we relax our assumption that every clause in F has constant length. In the general case, a clause can have length at most P, because it cannot have more literals than there are propositions. We show how, by slightly complicating the state vector of the previous section, we can still perform BCP and Extend-Prop in average time $O(\frac{1}{P})$.

14.2.1 Data Structures

Like the original state vector, our new state vector has five components: an F-triple, an indeterminate proposition counter, a BCP-stack, an N-array, and a P-array. Only the last two components (the N-array and the P-array) are different.

- Each element of the N-array is a 5-tuple $<\text{true-lits}, \text{false-lits}, \text{ind-lits}, \text{Lit-array}, \text{Lit-array-ptr}>$, where true-lits, false-lits, and ind-lits are exactly as before, Lit-array is an array whose length is the length of the clause in question, and Lit-array-ptr is an integer. For a clause C, the ith element of Lit-array is a triple $(l, P-index, flag)$, where l is a literal in C, $P-index$ is an integer, and $flag$ is a boolean. l is just the ith literal in C, $P-index$ is as before, and $flag$ indicates whether $v(l) \neq 1$. Lit-array-ptr is the index of a triple in Lit-array such that the literal in this triple is the leftmost indeterminate literal in Lit-array.

- Each element of the P-array is a 4-tuple $<p, \text{pos-lits}, \text{neg-lits}, T>$, as before. The contents of pos-lits and neg-lits are different, however: instead of just containing clause indices, they contain pairs of integers of the form $(C-index, l-index)$. As before, $C-index$ is the index of a clause C containing the appropriate literal; $l-index$ is this literal's index in C's Lit-array.

What we are essentially doing is indexing the literals in every clause (say in increasing order from left to right), and replacing litprs in the N-array's tuples with arrays that contain
information about every literal in their associated clauses.

14.2.2 Algorithms and Running Times

Let us see how the algorithms and running times of our basic operations change with respect to this new state vector. The only basic operations that are affected by this change are Extend-Prop and BCP.

The behavior of Extend-Prop changes as follows. When we call Extend-Prop with \((p, P-index)\), we decrement the second component of the state vector and index into the \(P\)-array, returning \(\langle p, poslits, neglits, T \rangle\). For each pair \((C-index, l-index)\) in \(poslits\) (or \(neglits\), as the case may be), we index into the \(N\)-array using \(C-index\), returning \(\langle true-lits, false-lits, ind-lits, Lit-array, Lit-array-ptr \rangle\); we modify \(true-lits\), \(false-lits\), and \(ind-lits\) appropriately; we modify the \(F\)-triple if necessary; we push \(C-index\) onto the BCP-stack if necessary; and we set the flag of the \(l-index\)th element in \(Lit-array\). Finally, we check whether \(l-index = Lit-array-ptr\). If so, we have just invalidated \(Lit-array-ptr\); we increment \(Lit-array-ptr\) until it once again points to an indeterminate literal in the clause. (If we reach the end of \(Lit-array\), then we have assigned a truth value to every literal in the clause.)

The behavior of BCP does not change substantially. As before, BCP repeatedly pops indices off of the BCP-stack and calls Extend-Prop until the stack is empty. What differs is how BCP obtains the last indeterminate literal in the eligible clause: this is just the \(Lit-array-ptr\)th element of the clause's \(Lit-array\).

Let us analyze the running time of these new algorithms down one path of the search tree. We only have to analyze the amount of time it takes to increment \(Lit-array-ptr\). The length of each clause can be at most \(P\), so we will increment \(Lit-array-ptr\) at most \(P\) times; on the average, then, we will increment it a constant number of times for each clause index we process. We can still process each of these indices in constant time on the average, so the average running time of Extend-Prop is \(O(\frac{1}{P})\), as before. It takes constant time for BCP to find the appropriate literal in an eligible clause, so its average running time is also \(O(\frac{1}{P})\).
15 Implementing the Heuristics

To complete our discussion of our implementations, we need only analyze the running times of our three heuristics. To do this, we first need to say something about the running time of BCP, as Heuristics 1 and 2 both use it.

We have shown that our implementation of BCP takes time $O\left(\frac{L}{P}\right)$ on the average with respect to any path through the search tree for F. We have not shown, however, that all of the $O(P)$ possible calls to BCP at any particular node (one for each indeterminate literal) take $O\left(\frac{L}{P}\right)$ time on the average, i.e., $O(P)$ time total; this is simply not true in general. All we can say about these calls to BCP is that they take $O(P)$ time each, and hence $O(P^2)$ time total, a disappointing result. Therefore the running time of Heuristic 1 is $O(L + P) = O(L)$ and the running time of Heuristic 2 is $O(P)$.

To implement Heuristic 3, we only have to implement the function Open-Binaries. (Recall that Open-Binaries(F, v, l) is the number of binary clauses C in F such that both literals in C are indeterminate and $l \in C$.) Given a pair (l, P-index), we index into the P-array, returning the tuple $<p$, poslits, neglits, $T>$. Then we simply count the number of open binary clauses whose indices are in either poslits or neglits. This takes time $O\left(\frac{L}{P}\right)$ on the average, or total time $O(L)$.

Even though Heuristic 3 is theoretically faster than Heuristics 1 and 2, one of the latter heuristics may still outperform it in practice. We determine whether this is the case in Section 17.

16 Lowering the Upper Bound for CSAT

The best known upper bound for CSAT is currently $O(2^{0.128L})$, due to Allen van Gelder [37]. If our search algorithm uses BCP, we know that we only have to explicitly change the truth value of $n - 1$ of the literals in any clause of length n. This immediately drops van Gelder's upper bound to $O(2^{0.128(L-N)})$, since his algorithm does not use BCP. To show that this is a genuine reduction in the upper bound, it suffices to show that N cannot be a constant; that is, if N is a constant, then we can satisfy F in polynomial time.

Theorem: We can satisfy any CNF formula F in time $(2P)^N$.

29
Proof: By induction on \(N \).

Base case \((N = 1) \): To satisfy one clause, we simply satisfy any of the literals in that clause.

Inductive hypothesis \((N = k) \): Suppose that we can satisfy \(F \) in time \((2P)^k \).

Inductive step \((N = k + 1) \): We can satisfy \(F \) using the following algorithm.

For each proposition \(p \) in \(F \):

1. Make \(p \) true. If any clauses in \(F \) are false, return no. Otherwise, at least one clause in \(F \) is now true, so at most \(k \) clauses in \(F \) are now indeterminate\(^{14}\). Recursively try to satisfy the indeterminate clauses. By the inductive hypothesis, this takes time \((2P)^k \).

2. If we found a way to satisfy \(F \) in step 1, return yes. Otherwise, we do the same thing with \(p \) set to false.

This algorithm will certainly find a satisfying truth assignment for \(F \) if one exists, and it runs in time \(2P \times (2P)^k = (2P)^{k+1} \). \(\square \)

The next section describes the results of experiments I undertook to determine which of the most promising improvements listed above is in fact the fastest.

17 Experimental Results

The main question we would like to answer is this: How much time should we spend doing clever things at each node of the search tree? If we spend too much time, the average search tree size will be small but the overhead will negate our efforts. On the other hand, if we do not spend enough time at each node, the algorithm will make too many bad decisions. No matter what we do, of course, the running time will still increase exponentially with the problem size; our objective is to maximize the problem size at which this becomes inconvenient.

I implemented a total of five different CSAT algorithms, two static and three dynamic. All of the algorithms performed BCP at every node. One static algorithm did reordering

\(^{14}\) I am assuming that we have applied the positive and negative rules to \(F \). Doing so guarantees that for every proposition \(p \) in \(F \), the literals \(p \) and \(\neg p \) each occur at least once, so extending the truth assignment in any way whatsoever will always satisfy at least one clause.
before starting the search and the other did not. The dynamic algorithms differed in terms of which simplifying transformations they performed, if any: the first dynamic algorithm performed no simplifying transformations whatsoever; the second performed explicit purging at every node; and the third performed both explicit purging (necessarily) and splitting into blocks at every node. For each dynamic search algorithm, I tried the three heuristics described in Section 1115.

Note that I only implemented two of the seven simplifying transformations listed in Section 10. I did this because these two transformations appear to be the best of the seven; they run in linear time and they are appealing for other reasons, as discussed earlier. At any rate, it turns out that even these transformations did not perform well enough to be useful (see below), so it is highly unlikely that the other five would improve things either.

The goals of my experiments were these:

- To compare the three heuristics listed in Section 1116.

- To compare static search with and without the ordering described in Section 13.

- To determine the feasibility of splitting F into blocks in either the main algorithm, a heuristic, or both.

- To compare the best of the dynamic search algorithms to the best of the static search algorithms.

I wrote these algorithms in Standard ML of New Jersey17. All three algorithms shared the same data structures and low-level code, and all three were written in exactly the same way to lend some legitimacy to the comparisons.

One technical point I should make about my implementation is that my top-level ML functions do not resemble the top-level pseudo-functions that appear elsewhere in this paper. The functions in this paper are recursive, and hopefully elegant, but require that we make a copy of the state vector at every node of the search tree. Since the size of the state vector

15 I could not, however, try Heuristic 3 with the second and third dynamic search algorithms because of their use of explicit purging.

16 Again, my implementation of these heuristics differs slightly from the way I described them.

17 The source code is freely available to anyone who wishes to verify these results.
is linear in F, this automatically adds an enormous amount of overhead to the algorithms. My ML functions use explicit backtracking and rely on a stack which contains the changes made to the state vector while progressing down the current branch of the search tree. Clearly, the larger the state vector, the more important it is to implement the algorithms in this way.

I measured the performance of each algorithm in three ways: the number of times it extends the truth assignment for F, the size of the search tree it generates for F, and the amount of time it takes to satisfy F (the most important criterion). The formulas I used were randomly generated, and corresponded to graph coloring problems. More specifically, the pair (N, ρ) represents a family of graph-coloring problems, where N is the number of nodes in the graph and ρ is the probability of an edge occurring between any pair of nodes. I tried to choose (N, ρ) pairs for which an average problem instance is just as likely to have no solutions as it is to have at least one solution. I cannot say anything, however, about the exact frequency with which these alternatives occur.

The following table lists the average CPU time in seconds \(^{18}\) for several interesting problem instance–search algorithm combinations. I obtained these results on a Sun 4/490 running version 0.66 of Standard ML of New Jersey. The (N, ρ) pairs represent problem instances, as described above. The abbreviations denote search algorithms as follows:

S-Plain Static search with BCP and no reordering.
S-Reorder Static search with BCP and reordering.
D-Plain-H1 Dynamic search with BCP, no simplifying transformations, and Heuristic 1.
D-Plain-H2 Same as above, but with Heuristic 2.
D-Plain-H3 Same as above, but with Heuristic 3.
D-Purge-H1 Dynamic search with BCP, explicit purging, and Heuristic 1.
D-Purge-H2 Same as above, but with Heuristic 2.

\(^{18}\) Not including garbage collection time.
D-Split-H1 Dynamic search with BCP, (explicit purging,) splitting into blocks, and Heuristic 1.

D-Split-H2 Same as above, but with Heuristic 2.

Blank entries in the table denote combinations with running times that are too long to care about (or to measure easily).

<table>
<thead>
<tr>
<th></th>
<th>$N = 10,$</th>
<th>$N = 20,$</th>
<th>$N = 30,$</th>
<th>$N = 40,$</th>
<th>$N = 50,$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0.55$</td>
<td>$\rho = 0.3$</td>
<td>$\rho = 0.25$</td>
<td>$\rho = 0.18$</td>
<td>$\rho = 0.15$</td>
</tr>
<tr>
<td>S-Plain</td>
<td>0.77</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Reorder</td>
<td>0.71</td>
<td>2.6</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Plain-1</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Plain-2</td>
<td>0.80</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Plain-3</td>
<td>0.47</td>
<td>0.97</td>
<td>6.8</td>
<td>13.5</td>
<td>32.3</td>
</tr>
<tr>
<td>D-Purge-1</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Purge-2</td>
<td>1.8</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Split-1</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Split-2</td>
<td>0.83</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Given the data in this table, we can reach the following conclusions:

- Static search with reordering is better than static search without it, although both algorithms get out of hand quickly.

- In general, dynamic search is better than static search.

- Out of the three heuristics under consideration, Heuristic 3 is the best. Heuristic 1 is hardly worth considering.

- With respect to the simplifying transformations, not performing any transformations at all is the best strategy.

- The fastest algorithm overall is D-Plain-3: dynamic search with BCP, no simplifying transformations, and Heuristic 3.
This data indicates that there seems to be little room for error with respect to CSAT algorithms. On the one hand, we see that a small amount of cleverness is absolutely essential if we are to have even reasonably useful CSAT algorithms, i.e., our search algorithms must be dynamic. On the other hand, the amount of work we should do at each node in the search tree should be very small. The extreme nature of these results may be partially due to the fact that our state vector is optimized for the more basic Extend-Prop and BCP operations but not necessarily for the simplifying transformations. Even though both of the transformations I tried run in linear time, their hidden constants are fairly large. I believe that it is more important to optimize the running times of the basic operations, however. The best of the search algorithms listed above seems to perform well enough in absolute terms to justify this belief.

18 Open Problems

As one might suspect, we have left a number of questions unanswered. Can we simplify our state vector and still maintain the same running times for Extend-Prop and BCP? Is it possible to run BCP for all of the indeterminate literals at a given node of the search tree in sub-quadratic time? Do better heuristics, simplifying transformations, or constraint propagators exist than the ones presented here? Are there any other improvements we can make to CSAT search algorithms that do not fit neatly within these categories? And finally, can we lower the upper bound for CSAT even further?

19 Conclusion

In this paper, we have examined search algorithms for CSAT in some detail. We have described the main ways to improve these algorithms and provided several examples of each. We have provided an optimal algorithm for Boolean Constraint Propagation and a new upper bound for CSAT itself. Finally, we have demonstrated empirically that the best of the algorithms we have surveyed is a dynamic search algorithm that runs BCP at every node and performs no simplifying transformations whatsoever.

Intuitively, I feel that CSAT is one of the simplest NP-complete problems to think about,
making it ideal for research in complexity issues. By studying CSAT search algorithms in much more detail, we may be able to accomplish two things at once—derive faster algorithms, and develop techniques for proving that certain classes of CSAT problems are intractable.

Acknowledgements

I would like to thank Dr. Sanguthevar Rajasekaran, Dr. David McAllester, Dr. Gregory Provan, Jeff Siskind, and Ramin Zabih for their help with this paper.
References

