






Figure 13: Synthesized motions

Before After removing After removing Compression
merging sub-optimal data redundant data time

DB 1 states=6,000 states=350, states=130 30 min
trans=90,000 trans=12,500 trans=700

DB 2 states=12,000 states=700 states=300 60 min
trans=250,000 trans=60,000 trans=5,000

DB 3 states=2,000 states=173 states=50 2 min
trans=25,000 trans=3,700 trans=300

Table 3: Compression for three motion graphs. The first
graph is computed from walking, jumping, ducking, sit-
ting and walking along the beam motions. The second
graph is computed from walking and picking motions
and the third one is computed from just walking mo-
tions.

8.3 The benefit of motion graph compression

In this experiment, we evaluate the effect of motion
graph compression. Table 3 shows these statistics for
three different databases: (1) walking, jumping, duck-
ing, sitting and walking along a beam; (2) walking and
picking up an object; (3) just walking motions. For each
database, we computed the number of states and transi-
tions in the motion graph before compression, after the
first compression step (removing sub-optimal data), and
after the second compression step (removing redundant
data). The table also gives the time required to compress
the graph (a precomputation step performed only once
for each database). Compression techniques reduce the
size of the graph by a factor of 20 to 50.

8.4 The benefit of the heuristic function

We also evaluated the effectiveness of our heuristic func-
tion. The results are shown in Table 4. We compare four
heuristics: (1) the Euclidean distance to the goal; (2) the
Hpos component of our objective function; (3) the Hmg

component of our objective function; (4) the combined
heuristic function with bothHpos andHmg components.

The results demonstrate that our heuristic function is es-
sential for making the search efficient and often makes
the difference between finding a good solution and not
finding one at all. The table also shows that both com-
ponents of the heuristic function are important, neither
component alone is effective.

9 Discussion

Motion graphs and their variations have proven to be
a a powerful technique to solve for a desired motion
when only rough sketch is given. In this paper, we have
demonstrated that it is possible to search a standard mo-
tion graph and interpolated motion graph using a glob-
ally optimal search algorithm, A� . Two contributions
made this possible: a lossless compression of the mo-
tion graph that significantly reduced the number of states
and a search heuristic that worked well for many exam-
ples of human motion. We demonstrated that the global
search was effective by creating long example motions
and showing that the optimal and near-optimal solutions
avoided the dithering and inefficient patterns of motion
seen in many other motion graph implementations.

Because the method computes a compressed motion
graph that contains only optimal paths, variations that
may have existed in the original data may be lost. Vari-
ations are always “sub-optimal” and therefore will be
culled. We would like to experiment with keeping sev-
eral maximally different paths rather than just one. In
our experience, most of what is culled is redundant
trajectories that are visually indistinguishable but addi-
tional experiments would be required to decide whether
important variability is lost.

The quality of the results largely depend on the qual-
ity of the motion database used to construct the motion
graph. For example, if the database contains only a mo-
tion of sitting on a tall chair then we cannot synthesize
a motion for sitting on a medium or a low height chair
because there are no two motions whose interpolation
would provide the desired motion. We also found that
the motion graph must have “good” connectivity. Our
experiments show that to obtain good results many states
must be able to quickly connect to the constraint states
and vice versa.

Global optimization has two significant effects on the
motion of the character. First, it should iteratively find
the “correct” strategy for the character to use to navigate
an environment. For example, is a two-legged jump or
a one-legged jump more efficient for an obstacle of a
given size? Table 2 illustrates these discrete changes.
The second feature of the global optimization should
be to fine tune the motion, choosing a series of walk-
ing steps with little velocity change, for example. This
second feature is not as apparent in the animated mo-



ε Euclidean distance H2D Hmg Hcombined

time exp solved time exp solved time exp solved time exp solved
10.0 8.0 185,813 100% 8.1 160,718 100% 11.6 72,004 100% 0.8 9,332 100%
3.0 17.1 481,321 100% 16.8 406,149 100% 15.1 103,000 100% 1.6 16,068 100%
1.0 100.2 1,832,347 20% 97.8 1,748,620 20% 48.1 270,812 80% 49.5 275,712 80%

Table 4: Evaluation of the heuristic function for the problem of picking up an object. We sampled the location of the
object into 179 samples. Each column shows the average search time in seconds, the average number of states expanded
during the search and the percent of the experiments that succeeded (found solution within 10 minutes and did not run
out of memory). The statistics are reported for the Euclidean distance to the goal, the H2D component alone, the Hmg

component alone, and the combined heuristic function. The first row shows results for a solution whose cost is at most
10 times the optimal one. The sub-optimality bound for the second row is 3 and the solution in the last row is optimal.

tion but is still visible in the decrease in energy as the
optimizer iterates.

Although we did a few informal experiments to see
if a subject used the same strategies as the animated
character for a given terrain, we did not do a defini-
tive assessment with a large naive subject pool. Such
a study would be easy to run (using coding of the be-
havior selected for each part of the obstacle course as
the metric). We expect that the sequence of behaviors
from the human subjects would be similar to those of
the animated character for many but not all examples.
They might differ because the motion graph did not in-
clude the right behaviors (a long one-legged jump, for
example) so another less efficient behavior is selected (a
long two-legged jump, for example). Alternatively dif-
ferences might arise because people do not always opti-
mize efficiency but instead optimize for style, comfort,
safety or other factors.
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