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Judgmental Decomposition: When Does It Work?

Abstract

We hypothesized that multiplicative decomposition would improve accuracy only in certain conditions. In
particular, we expected it to help for problems involving extreme and uncertain values. We first reanalyzed
results from two published studies. Decomposition improved accuracy for nine problems that involved
extreme and uncertain values, but for six problems with target values that were not extreme and uncertain,
decomposition was not more accurate. Next, we conducted experiments involving 10 problems with 280
subjects making 1,078 estimates. As hypothesized, decomposition improved accuracy when the problem
involved the estimation of extreme and uncertain values. Otherwise, decomposition often produced less
accurate prediction.
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Abstract

We hypothesized that multiplicative decomposition would improve accuracy only in certain
conditions. In particular, we expected it to help for problems involving extreme and uncertain
values. Wefirst reanalyzed results from two published studies. Decomposition improved accuracy
for nine problems that involved extreme and uncertain values, but for six problems with target
values that were not extreme and uncertain, decomposition was not more accurate. Next, we
conducted experimentsinvolving 10 problems with 280 subjects making 1078 estimates. As
hypothesi zed, decomposition improved accuracy when the problem involved the estimation of
extreme and uncertain values. Otherwise, decomposition often produced less accurate predictions.

Keywords: Decision Analysis; Estimation; Extreme Values; Forecasting; Multiplicative
Decomposition; Uncertainty

|. Introduction

Consider the following question: What is the estimated yearly circulation of a proposed new magazine on
raising exotic animals? People are likely to respond that they have no idea. But do they? What are they likely to say
if asked whether the number was greater than 100 million? Would they say that it islessthan 1000? Most likely,
people would say that the true value is somewhere between these two values. Obviously, they know more than they
think they do when first asked.

How well aperson is ableto forecast aquantity is related to the relevant information that they have at their
disposal, either from information sources or from experts. It is also afunction of whether they can break the problem
into parts so that they can use their information effectively. Forecasters frequently break a problem into parts, make
forecasts from each part, then recombine the separate forecasts to make aforecast of the target value. In 1968
Howard Raiffa (1968) claimed that such a procedure, decomposition, is ‘the spirit of decision analysis.' Since then,
research has seemed to support the view that decomposition is a useful strategy with wide applicability and little
risk.

Prior literature on judgmental decomposition (Armstrong et al., 1975, and MacGregor et al., 1988)
concluded that decomposition would be especially effective for problemsinvolving uncertain values. However, we
do not know much about the conditions under which judgmental decomposition is most useful. Armstrong et al.
(1975) had suggested that the scal e of the problem might make further study worthwhile, and our paper addresses
that issue. In examining the problem, we reanalyzed results from two studies. In addition, we, conducted
experiments with new subjects. We also examined alternative approaches for assessing uncertainty to determine
whether they would yield different recommendations about when decomposition is appropriate.

2. Hypotheses

The basic idea behind decomposition is simple. Given atarget quantity that is difficult to estimate, one
breaks the problem down into subproblems that are easier to estimate. The difficulty liesin translating thisideainto
practice. For decomposition to be done successfully, certain conditions are desirable. First, the target value should



be one that is difficult to estimate. Second, estimation errors for each part should be less, relatively speaking, than
the errorsfor estimating the target value. Third, estimation errors for the parts should not have strong positive
correlations between one another. Negatively correlated errors are desirable so that one has offsetting errors. These
conditions are not easy to specify in operational terms.

Traditionally, the term decomposition has been used to refer to the practice of breaking a problem into
multiplicative elements. An additive breakdown is usually referred to asdisaggregation or segmentation. Our paper
isrestricted to multiplicative decomposition and we use the term decomposition to refer to this.

Decomposition is often viewed as a saf e strategy. Rather than putting all of one's eggs into a single basket,
estimates are provided separately. Errorsin one element may compensate for errorsin another. However, when
errors are positively correlated, they can be explosive. For example, if two components are in the same direction and
are each equal to 20%, thiswould translate into an error of 44% in the target value (1.2 x 1.2 = 1.44).

Target values with extreme values are likely to create difficulties for subjects unless these nurrbers are well
known. For very large numbers, people might make estimates that are too small. Lacking good intuition, an
estimator might assign a“more reasonable number' to a quantity in question. We would expect the converse for very
small numbers, such as “onein 10 million.'

We hypothesized that decomposition would improve accuracy for problems with extreme values when
subjects were highly uncertain about the target value. The reasoning is simply that large numbers are confusing to
many people. With decomposition, the analyst might be able to avoid the extreme numbers associated with high
uncertainty. Uncertainty is an important aspect of this hypothesis. Thus, we do not expect that decomposition would
help to estimate well known numbers, such as the distance from the Earth to the sun (when most of the experts
believe that the distance is about 93 million miles).

The operational definition of an extreme value is difficult to determine. To provide a simple measure of an
extreme value, we initially defined it as any number having more than seven digits (equal to or greater than 10
million). Certainly, many people have difficulty grasping numbers of this magnitude. For example, a book has been
written' with the sole purpose of helping people to understand the magnitude of one million. It consists of one
million dots with comparisons at various points where examples are given (Hertzberg, 1970).* Psychologists also
refer to the ability of the human mind to handle only seven things (plus or minus two).

The selection of the unit of measure causes problems. For example, one could change the units from miles
to inches when asking someone to estimate the distance from New Y ork to San Francisco. However, some important
quantities are not amenable, either conceptually or computationally, to changesin scale.

We were al so concerned about how best to assess uncertainty. In particular, would different approaches
lead to different conclusions about when to use decomposition?

3. Reanalysisof prior studies

In an early study of judgmental decomposition, Armstrong et al. (1975) concluded that multiplicative
decomposition typically improves accuracy and is unlikely to reduce accuracy. The study involved such problems as
estimating the number of packs of Polaroid film that were used in the United Statesin 1970. The results also
supported the hypothesis that decomposition is especially useful for problems where the estimator's perceived
uncertainty about the true valueis high. A subsequent study by MacGregor et al., (1988) also found that judgmental
decomposition improves accuracy. That study used similar problems, for example, estimating the value of imported
passenger carssold in the U.S. the previous year.

! Asan example of how difficult it isto think about extreme numbers, consider the following. A typographical error
was madein Armstrong et al. (1975). The number of cards saying "Carefree Sugarless Gum" that were sent to a
Philadel phiaradio station was reported as 66.5 billion rather than the correct value, which was 66.5 million. We
missed thisin proofreading, and the number has subsequently been cited in other papers without any questions being
raised.



Armstrong et a. (1975) examined uncertainty by asking 151 subjectsto rank problems according to the
confidence that they had in their ability to provide accurate answers. MacGregor et al. (1988) addressed the same
issue by using the variability among 45 subjectsin their estimates for each target value. Specifically, they focused
on theinterquartile range. The interquartile range represents the middle 50% of a distribution and is calculated as the
difference between the point at the 75th percentile of the distribution (Q3) and the point at the 25th percentile (Ql);
the median of the distribution is at the 50th percentile (Q2). We expected that problems with extreme unknown
values would create uncertainty among estimators and would therefore show up in the interquartile range. We
examined this hypothesis by comparing the nunber of digitsin each of the 16 problemsin MacGregor et a. with the
interquartile range of error ratios. As expected, the number of digits was related to uncertainty. The correlation
between the number of digitsin the actual values for each problem and the corresponding interquartile range was
about +0.75.

To examine whether decomposition improved accuracy for problems involving extreme unknown numbers,
we split the MacGregor et a. data according to magnitude and disagreement. Thisyielded five problems where scale
was not extreme (using seven or fewer digits gave aroughly equal breakdown of the problems) and where assessors
werein agreement (we used an interquartile range with alog | o of 1.3 or less, which means that the ratio between
the lowest quartile and the highest quartile isless than two). The five problems were the numbers of physicians,
marriages, alcoholics, university employees and hospital employees. Six problems had extreme magnitude (over
seven digits) and high disagreement among estimators (interquartile range of 1.75 or more, implying aratio of 5.6 of
the largest to smallest quartile). These problems involved the numbers of welfare cases, imported cars, alcohol
dollars, mail handled by post offices, gasoline and cigarettes.

We estimated the average improvement for decomposition in MacGregor et al. in two steps. First,
geometric mean estimates were cal culated for the group of subjects who used the decormposed version (this being
the computed full algorithm from Table 6 in MacGregor et al.) and for those who used the global version. These
estimates were then compared with the actual values for each problem.

Tablel
Decomposition versusglobal errors: reanalysisof prior studies
Conditions Number of Median error ratios

problems Global Decomposition Error reduction
Not extreme, low uncertainty 5 18 23 -05
MacGregor et al. 1 54 23 21
Armstrong et al.
Extreme, high uncertainty
MacGregor et a. 6 99.3 30 9.3
Armstrong et al. 3 18.0 5.7 12.3

Decomposition errors were smaller than global errors for each of the six problems where disagreement
(interquartile range) was high and the actual values were extreme. Subjects who made global estimates werein error
by afactor of 99.3 (9930%) on average. In contrast, the error ratio for the decomposed version for the same six
problems was 3.0, or 300%.2 Thus, the median error was reduced by afactor of 96.3 (see bottom part of Table 1).
For problems without extreme values and where disagreement was low, decomposition yielded less accurate
estimates, as its error was 50% higher than that for the global approach. Table 1 summarizes these results.

We did asimilar analysis for the problemsin Armstrong et al. (1975). Here, the analysis was based on
individuals rather than groups. Error ratios were calculated for each subject's estimate for each problem by
comparing their estimates with the actual values. The median error ratio was then obtained for each problem.
Decomposition produced substantial gains (1230% error reduction) for the three extreme problems with the highest

2 We calculated the geometric means of the two error ratiosin the middle of the distribution for the global and
decompositional conditions.



uncertainty.3 Decomposition also provided alesser improvement for the one problem that did not involve an extreme
number. Table 1 summarizes these results as well.

Averaging across the two studies (weighting according to the number of questions), decomposition reduced
error by aratio of 68.3 for the nine problems involving extreme uncertain values. However, decomposition had no
overall effect for the other six problems.

4. An experiment on the effects of extreme uncertain values

We conducted an experiment to provide further evidence on the effects of multiplicative decomposition when
applied to problems with extreme uncertain numbers. This section describes the problems and the subjects.

4.1. Problems

We selected problems in which the magnitude of unknown numbersto be estimated varied. Our extreme
problems had seven or more digits, ranging in value from 3 540 940 to 4 243 000 000. As noted earlier, this
definition of extreme is somewhat arbitrary. Not extreme numbers in this set of problems had four digits or less, in
order to provide a marked distinction from extreme numbers. Table 2 provides the 10 problems, along with, the
correct answers taken from almanacs and fact books.

Table2

Problems and magnitudes: ver sus actual ver sus estimated

Problem Correct answer Number of digits
Actual Upper quartile estimate

Not extreme magnitude

Circumference of a$.50 coinininches 371 1 1

U.S. Presidents 41 2 2

Argentineimmigrantsto U.S. (annually) 2,800 4 5

Bank failuresin 1993 4,004 4 4

Extreme magnitude

Areaof U.S. in square miles 3,540,940 7 7

Circulation of TV Guide 16,900,000 8 6

Pairs of athletic shoes made per year 23,400,000 8 7

Auto accidents per year 24,100,000 8 8

Pairs of men’s pants made per year 124,000,000 9 9

Bushels of wheat produced in world per year  4,243,000,000 10 10

All questions relate to the U.S. unless stated otherwise.

Because actual values would not be known to the subjects, we first determined whether it would be
possible to identify problems that might involve extreme values. We reasoned that typical subjectswould not do
well at such estimates. Thus, we used the geometric mean of the upper quartile (top 25%) of the estimates. That is, if
the upper quartile of subjects expected thisto be an extreme number, then it was treated as such. By this measure,
the expected number of digits was a good match of the actual number of digits, as shown in Table 2. The largest
estimate for the small group was that Argentine immigrants would be afive-digit number, and the smallest estimate

3 We used the median error ratios across the new groups of subjects that were tested for the film and tobacco
problems. Only two groups did the Contest problem, and here we used the geometric mean.

4 After anal yzing the prior research (Table 1), we revised our definition of extreme for this study from “more than
seven digits to “seven or more digits.' Extremity could also be defined in terms of small numbers. An example
would be, "What is the chance that aperson in the U.S. will die next year because of botulism? (The answer is
1/100,000,000.)



for the extreme problems was that the Circulation of TV Guide would be a six-digit number, so the classification of

the problems was the same.

To determine whether the large target values were uncertain, we examined the interquartile ranges. The
smallest of these ranges for the group of problems having extreme values indicted that the upper quartile mean was

more than 10 times aslarge as the lower quartile mean.

For each problem we constructed a global version and a decomposed version. Table 3 summarizes the full
set of 10 decomposed algorithms. For the sake of brevity, only the algorithm steps requiring subjects to make
component estimates are provided; intermediate arithmetic steps are omitted. We also asked subjects to rate their
knowledge about each target value, their expected accuracy and the probability that their answer would be within

10% of the true value.

Tahle 3

Abbreviated descriptions of algorithms for the 1en estimation problems

Argenting immigranis

* Population in the U.S.

* Proportion of population that immigrated 1o U.5,
® Percentage of U.S immigrants from Argentina

Circulgrion of TV Guide

* Households in the U.5.

# Proportion of households with a TV

® Proporiion of houscholds with 3 TV receiving
TV Guide

Circumference of 50¢ coin

* Diameter in inches of a 50 ¢ coin

* Mumber of picces of string the length of the
diameter needed to wrap around circumference

Bushels of whear

# Population of the world

* MNumber of bushels of wheat consumed per person
per year

* Proportion of wheat wasted per year

Bank failures in 1933

* Current population of the U.5.

* Population of U.5. in 1933 as a proportion of
current population

® Mumber of cusiomers for a typical bank

* Froportion of banks failed in 1933

U5, presidents
* MNumber of years U.S. has had presidents
s Mumber of years the average president holds office

Men's panis

® Mumber of men in the U5,

® Number of pairs of pants the average man buys cach
year

® Number of women in the 1.5,

® Number of pairs of men's pants the average woman
buys each year

¢ Proportion of men's pants manufactured in the U.S,
that are sold to U.S. customers

Athletic shoes

® Population of the U.5,

® Proportion of the population that wears athletic shoes

® Pairs of athletic shoes each wearer buys per year

® Proportion of athletic shoes manufactured in U8,
that are sold to U.5. customers

Aute accidenis

® MNumber of people in the U.S. of driving age

* Proportion of people of driving age who drive

® Number of accidents the average driver has per year

Area of U5,

& Distance in miles from San Franciseo, CA io
Washington, D.C.

* Distance in miles from San Dicgo, CA to
Seattle, WA

* Proportion of the U.5. that would fil into a rectangle
with an area equal to the product of the above
dimensions,

For some of the problems, such asAthletic shoes, one of the components involved an extreme value.
However, we were reasonably confident that subjects would know this value. Also, data on these values are readily

available so that one could insert the known value.

4.2. Subjects

Subjects for the experiment were individuals who answered advertisementsin the University of Oregon
daily newspaper. The advertisements called for participation in judgment and decision-making tasks. Two hundred
and eighty individuals participated in the experiment, which was conducted in two sessions. Subjects were randomly
assigned to either the global or the decomposition treatment. In the first session, the problems$.50 coin, U.S.



presidents, Argentine immigrants, Bank failures, Circulation of TV Guide and Bushels of wheat were administered.
Those subjects assigned to the global treatment received all six problems. Because of time constraints, subjects
assigned to the decomposition condition received half of the problems. In the second session, the remaining four
problems were administered. Again, subjectsin the global condition received all four of the remaining problems,
while decomposition subjects received half of the problems.

5. Results

As had been done in previous studies of judgmental forecasting (Armstrong et al., 1975, and MacGregor et
al., 1988), we used the error ratio as an index of accuracy. The error ratio is computed as the ratio of theindividual's
estimated value to the correct answer, or the reverse, such that the result is greater than or equal to 1.0. Estimates for
agiven problem were summarized across subjects by computing the geometric mean of the error ratios.

We had hypothesized that decomposition would improve accuracy for problems having extreme uncertain
values. The results, shown in Table 4, were consistent with this hypothesis. We summarized the problems into two
groups: extreme problems (correct answer greater than 3,540,940) and not extreme problems (correct answer 4,004
or less). Accuracy was superior for decomposition in five of the six extreme problems, with an error reduction that
ranged from afactor of 4.10 (Athletic shoes) to 91.47 (Auto accidents). Only the Circulation of TV Guide problem
suffered a decrease in accuracy with decomposition. This decrease was modest conpared to the gainsin accuracy
for the other five extreme problems, and this decrease was not statistically significant. Across all six problems, the
median error was reduced by afactor of 19.78, approximately a 20-fold improvement in accuracy. Following
Winer's method of adding is (as described in Rosenthal, 1978), these results were statistically significant at p <
0.001 using aone-tail test.

Table4
Error ratiosfor global versus decomposed estimates (for individuals)
Problems Samplesize Error ratios (geometric Error t-test
means) reduction
Global Decomp Global Decomp

Not extreme
$.50 coin 64 62 182 141 041 4.07%*
U.S. presidents 64 63 123 135 - 012 -155
Argentineimmigrants 65 %! 4.89 46.77 -41.88 -5.85**
Bank failures 64 57 1045 1950 - 903 -1.69

Median - 458

Combined experiments (ztest) -2.49*
Extreme
Areaof U.S. 30 30 33.88 170 32.18 6.00%*
Circulation of TV Guide 64 60 7.76 10.96 -3.20 -111
Athletic shoes 31 32 19.95 15.85 410 047
Auto accidents 31 30 93.33 186 9147 8.07**
Men’s pants 31 31 17.38 10.00 7.38 101
Bushel of wheat 61 62 45.71 6.92 38.79 4.57**

Median 19.78

Combined experiments (ztest) 4.37**

*Significant at p <0.05
**Significant at p < 0.001

By contrast, accuracy for not extreme problems was reduced with decomposition. Error Auction valuesfor
three of the four not extreme problems were negative, indicating a superiority of global estimation over

® Because the ratios involved some extreme values, the t-tests were done on the logs of the error ratios rather than on
the ratios themsel ves.



decomposition. Decomposition increased the median error or these problems by 458%, an increase that as
statistically significant at p < 0.05. The test or the not extreme values was two-tailed cause we had no directional
hypothesis. Our analysis overstates the statistical significance; the various estimates are not completely independent
of one another.

5.1. Uncertainty of estimation

Whether decomposition is appropriate depends on some measure of uncertainty. We propose that analysts
first determine whether the problem, is subject to much uncertainty. If so, decomposition may be appropriate,
especially if one can structure the problem to avoid extreme certain values.

Otherwise, global estimates should be used. Uncertainty decreases the degree to which an estimate from
various assessors exhibits alower variance or areduced range. Table 5 shows the interquartile ranges for the global
and decomposed estimates. The entries consist of the logs of Q1 and Q3 aswell astheir differences. Q1 corresponds
to the 25th percentile of the distribution, while Q3 corresponds to the 75th percentile. If decomposition reduces
uncertainty, then alower Q3-Q1 difference should result. Computed in thisway, the differencesin Table 5 can be
interpreted as the number of digits by which the estimates of Q1 and Q3 differed.

Table5
Analysis of interquartileranges
Problems Global Decomposed

LogQ3 LogQl Differences Log Q3 LogQ1  Differences

(Q3-Q1) (Q3-Q1)

Not extreme
$.50 coin 048 0.20 0.28 0.63 042 021
U.S. presidents 171 159 012 170 153 017
Argentine immigrants 430 3.30 1.00 574 3.60 214
Bank failures 3.70 2.08 162 492 318 174
Extreme
Areaof U.S. 6.30 4.00 2.30 6.76 6.39 0.37
Circulation of TV Guide 754 6.18 136 7.80 5.95 185
Athletic shoes 8.00 6.00 200 884 7.75 1.09
Auto accidents 6.18 5.00 118 7.80 6.08 172
Men’s pants 8.00 6.00 2.00 953 8.07 146
Bushels of wheat 1048 7.18 3.30 1054 9.65 0.89

For not extreme problems, the interquartile ranges are higher for the decomposed estimates than the global
estimates for three of the four problems. For one problem, Argentine immigrants, the interquartile range for the
decomposed version was higher than that for the global (2.14 versus 1.00). This occurred even though each part had
the same interquartile range as the target value. This problem did not, then, meet the condition that the parts are
easier to forecast than the target value, nor were the errorsindependent. Thus, it is not surprising that decomposition
was not helpful for this problem.

For extreme problems, the range for the decomposed estimate was | ess than that for the global, except for
the Auto accidents and Circulation of TV Guide problems. In other words, decomposition often improved confidence
for difficult problems when the agreement among assessors' estimates was used to gauge confidence. Furthermore,
the differences between the global and decomposed ranges for the four problems with improvements were
substantial, being typically greater than one digit. Although the number of problemsis not sufficient to assessthe
relationship between the interquartile ranges arid errors, thisresult is consistent with that found in the seven
problems examined by Aschenbrenner and Kasubek (1978).

A tenet of decomposition states that the parts of a problem are more tractabl e than the whole. This means
that uncertainty in the estimates of a problem's components should be lower than that for the global estimate. We
computed the interquartile ranges for each of the components of the six problemsin Table 6. The parts were easier



to estimate than the target value for three problems: 50 ¢ coin, U.S. presidents and Bushels of wheat. Thefirst two of
these had target values that were easy to assess directly, whereasBushels of wheat had an extreme value that was
difficult to measure. The Bushels of wheat problem met al conditions for decomposition. As expected,
decomposition was successful for this problem. Conversely, decomposition was less accurate for four of the other
five questions.

Table6
Assessments of subjective confidence

Mean probability ratings
that estimate iswithin

Problems Mean knowledge ratings® Mean accuracy ratings® 10% of true answer
Global Decomposition Global Decomposition Global Decomposition
U.S. Presidents 6.16 5.46 6.02 5.38 64.4 35.2
$.50 coin 550 445 561 445 549 55.8
Circulation/TV Guide 3.40 2.35 346 258 321 246
Bank failures 319 217 3.06 220 280 189
Argentinieimmigrants  2.15 181 238 232 244 16.8
Bushels of wheat 224 202 216 227 189 199

& High scoresimply greater knowledge and greater perceived accuracy (scale from 1 to 10).
5.2. Subjective confidence ratings

A second source of uncertainty estimates is the subjective confidence that forecasters have in their
knowledge about a problem. We addressed three questions with respect to subjective uncertainty. (1) Do aternative
measures of uncertainty yield similar recommendations? If yes, then we could use the | east expensive approach to
assessing uncertainty. (2) Are judges more confident when they make decomposed estimates or global estimates? (3)
Does decomposition lead subjects to become better calibrated about their confidence?

Asthe simplest and |east expensive approach, we asked subjects to provide judgments of their knowledge
about each target value, and the degree to which they thought their estimate would be accurate. Self-ratings of
knowledge and accuracy were obtained from the subjects before they made their estimates by using the following
scales.

“Before you begin, indicate on the scale below how much you think you know about the topic”
(1= know very little; 10 = know agreat deal).

“How accurately do you think you will be able to estimate this quantity?’
(1= low accuracy; 10 = high accuracy).

Judgments were obtained for a subset of six problems. Table 6 shows alternative assessments of accuracy for these
problems.

After subjects had estimated the value for each of the six problems, we asked them to indicate the
probability that their estimate was within 10% of the correct answer. These results are also presented in Table 6.
Finally, we calculated the interquartile ranges of the global estimate for each problem, shown in the last column of
Table 6.

With the exception of the interquartile range, the different approaches to subjective confidence produced
similar results. Theintercorrelations among the three measures across the six problemswere al over 0.99. Given the
close correspondence among the three measures, they were expected to be of roughly equal value in deciding when
to use decomposition.

We applied the same procedures to subjects who received the decomposed versions of the problems.
Across all six problems, subjects had higher self-ratings of problem knowledge in the global condition than in the
decomposition condition. Because subjects in the decomposition condition received more than one estimation
problem, their self-ratings of problem knowledge may have been influenced by the difficulties they experienced



with the complexity of the problem. Thiswas also the case for self-ratings of accuracy, except for the Bushels of
wheat problem. Similar results were obtai ned when we asked the questions about confidence after subjects had
completed their estimates. In other words, the different assessments each led to the conclusion that subjectsin the
decomposition condition thought that the problems were more difficult than did subjectsin the global estimation
condition. These results agree with the findings of Sniezek et al. (1990), who had concluded that the increased
processing (for decomposed problems) leads to a reduction inconfidence. In retrospect, it might have been better for
usto have asked for estimates of the difficulty for each of the parts. Henrion et al. (1993) did this, and their subjects
reported that the components were easier to estimate than the global value.

Are subjects better calibrated when they use decomposition? Probability assessments are said to be
externally calibrated if, for a given probability assessment (e.g., 0.6), exactly that proportion (e.g., 60%) turn out to
be correct. We summarized the calibration results for global and decomposed estimates, across all ten problems.
Mean probability assessments were generally higher than the proportion correct for both approaches, indicating
overconfidence. On average, those making global estimates expected 38.9% of their answers to be within 10% of the
true value, but only 10.9% were that accurate. Those using the decomposed approach expected 32.6% of their
estimates to be within 10% of the true value, but only 9.0% were that accurate. 1n effect, decomposition reduced
overconfidence from 28.0% in the global case to 23.6% for decomposition, with the largest reduction occurring in
those situations where subjects felt most confident, as shownin Fig. 1.

5.3. Limitations

Two of the four problems in the not extreme version (Argentine immigrants and Bank failures) involved
elements with extreme values. Because each of the components had an element dealing with the U.S. population, we
assumed that the subjects would be familiar with these values. To examine this assumption, we analyzed the popu-
lation estimates for each of the problems. The median population estimate for the Argentine immigrants problem
wasin error by afactor of 1.97 from the actual, while for Bank failures it wasin error by afactor of 1.42. For both
problems, errorsfor the U.S. population conponent were less than errors for the global quantities. Nevertheless, we
were surprised at the difficulty individuals had with estimating this value. In practical problems, of course, one
could simply use the actual value. In their study of decomposition, Henrion et a. (1993) gave the U.S. population
valueto the subjects.

Fig. 1. Calibration of probability assessmentsthat estimated answer iswithin 10% of true answer.
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The issue of "how extremeis extreme' has not been resolved. We proposed a definition based on the
number of digits (six or seven), but we did not examine alternatives. Nor did we resolve the issue of how to specify
the unit of measure.

We expect that other conditions might affect decisions on when to use decomposition. For example,
guestion type may have some importance. We do not know the extent to which our problem selection may have
affected findings.

6. Discussion

Despite the improved accuracy it afforded, decomposition did not increase subjects' confidence in the
accuracy of their estimates. However, the interquartile estimates were smaller for the decomposed estimates and
confidence in the accuracy of estimates was slightly more appropriate.

Perceived uncertainty measures are easy to obtain. As shown in Table 6, self-assessments of uncertainty
provided similar rankings of the relative uncertainty for the problems. The interquartile ranges provided somewhat
different information than the self-assessments. I nterquartile ranges of the estimates are not expensive, but they do
require a pretest.

The present study addresses the issue of whether estimates by individuals can be improved when no other
data are available. However, we expect that other situational characteristics or estimation-aiding strategies would
also affect the usefulness of decomposition. For example, aforecaster could decompose a problem to use different
sources of information or different experts. For some parts of the problem, known values may exist. Alternative
decomposition methods could be used to produce an estimate, and resulting values for a quantity could be resolved
in light of one another. MacGregor and Liehtenstein (1991) attempted such an approach and found that subjects
tended to resol ve estimates by applying an averaging model. Revised estimates generally fell between two estimates
of atarget quantity, where each judgmental estimate was produced by a different method.

Although our approach to decomposition was harmful for problems that did not involve extreme - uncertain
numbers, there might be alternative approaches that are successful. For example, decomposition might restructure a
problem so that it is easier for subjects to think about.

Decomposition tended to reduce estimators' confidence levels, perhaps because of the increased processing
involved. Thisreduction in overconfidence and the improvementsin accuracy produced modest gainsin calibration.

7. Conclusions

The theory behind decomposition is simple. What is difficult is how to translate the theory into operational
terms. We examined some operational procedures for identifying conditions under which decomposition should
improve accuracy.

Extreme uncertain values are difficult for subjectsto estimate. We hypothesized that decomposition to
remove extreme values would improve estimation accuracy. This study examined nine “extreme value-high
uncertainty” problems from two prior studies. Decomposition proved useful for each of these nine problems, and the
typical gain in accuracy was substantial (error ratio was reduced by 96.3 for the study with six problems, and by
12.3 for the study with three problems). In the present study, involving six problems with extreme values, the error
ratio was reduced by a factor of almost 20.° Decomposition failed for one extreme problem because it was not
successful in producing more accurate estimates of the parts.

® The results from Horaet al. (1993) also are consistent with our hypothesis. They found that decomposition was
more accurate than global estimates for three quantities whose true values had at least eight digits (e.g., What were
the salesfor Long’s Drug Storesin Hawaii in 19867?).
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Decomposition was risky for problemsthat did not involve extreme and uncertain values. For six such
problems from two prior studies, decomposition had little overall effect on accuracy. However, for four such
problemsin the current study, decomposition yielded | ess accurate estimates by an average error ratio of 458%.

Based on the limited evidence to date, we suggest the following procedure for judgmental decomposition.
First, assess whether the target value is subject to much uncertainty by using either a knowledge rating or an
accuracy rating. If the problem is an important one, obtain interquartile ranges. For thoseitems rated above the
midpoint on uncertainty (or above 10 on the interquartile range), conduct a pretest with 20 subjects to determine
whether the target quantity islikely to be extreme. If the upper quartile geometric mean has seven or more digits, de-
composition should be considered. For these problems, compare the interquartile ranges for the target val ue against
those for the components and for the recomposed value. If the ranges are less for the global approach, use the global
approach. Otherwise use decomposition.

The current study suggests that decomposition has more limited value that previously thought. It improved
accuracy only when the situation involved uncertain and extreme quantities. Furthermore, decomposed elements
needed to be easier to estimate than the global. For problems that did not concern extreme values with high
uncertainty or where estimates of the parts were not more accurate than that of the target value, decomposition
produced less accurate estimates.
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