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Information of Interactions in Complex Systems

Abstract
This paper addresses misconceptions of the multi-variate interaction-information measure Q, which several
authors have reinvented since its proposal by McGill (1954), giving it a variety of names and interpretations.
McGill’s measure claimed to quantify the amount of information of interactions among three or more
variables in complex systems. In (Krippendorff, 1980), I raised doubts about the validity of Q and its relatives.
The chief problem that Q-measures fail to recognize is that complex interactions tend to involve circularities
and the probability distributions characterizing such circularities cannot be obtained by products of
probabilities, which underlie information theory as far as developed by Shannon (Shannon & Weaver, 1949).
I argued that Q-measures are mere arithmetic artifacts, and proposed an algorithmic solution to measuring
the amount of information in the interactions within complex systems, now widely accepted. The paper
responds to Leydesdorff ’s (2009) “Interaction information: Linear and nonlinear interpretations,” published
in the current issue of this journal and preceding discussions of these issues on the Cybernetics Discussion
Group CYBCOM and personal correspondence involving Jakulin (2009). It prefers to rely on demonstrations
with numerical data over abstract interpretations of mathematical forms that can so easily entrap scholars into
believing that they measure something real without considering evidence to the contrary.
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COMMENTARY

Information of interactions in complex systems

Klaus Krippendorff*

The Annenberg School for Communication, University of Pennsylvania, 3620 Walnut Street,
Philadelphia, PA 19104-6220, USA

I am responding to Leydesdorff’s (2009) ‘Interaction information: linear and nonlinear

interpretations’, published in the current issue of this journal, but want to address the larger

problem of which his is just one example. His paper seeks to justify the use of multi-variate

Q-measures that can be found in several literatures as I- or information-measures, but have

been shown to be algebraic artifacts with questionable statistical interpretations

(Krippendorff 1980, 2009). Most users of these measures, including Leydesdorff, rely

on other authors who, I suggest, are seduced like I was until 1979 by their elegant algebra,

without exploring what they could possibly indicate.

The quantities in question were introduced by McGill (1954) as measures of the

amount of information of the interactions in complex systems. After I raised some

questions regarding them in a draft of a paper by Lucio-Arias and Leydesdorff (2009) that

Leydesdorff shared on the Cybernetics Discussion Group CYBCOM and personal

correspondence involving Jakulin (2009), Leydesdorff (2009) acknowledged some

problems with these Q-measures, but argued for theoretical interpretations of what they

do, which, I maintain, do not overcome their serious shortcomings. Leydesdorff and

Jakulin (2009.2.27) weigh their arguments by referring to their common use. I prefer

demonstrations instead and will proceed accordingly.

We agree on the contours of Q’s definition:

QðAÞ ¼ 2HðAÞ ¼
X
a[A

pa log2 pa; ð1Þ

QBðAÞ ¼ 2HBðAÞ ¼ HðAÞ � HðABÞ ¼
X

ab[AB

pab log2

pab

pb
; ð2Þ

QðABÞ ¼ QBðAÞ2 QðAÞ ¼ HðAÞ þ HðBÞ2 HðABÞ ¼ TðA : BÞ

¼
X

ab[AB

pab log2

pab

papb
; ð3Þ
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QðABCÞ ¼ QCðABÞ2 QðABÞ ¼
X

abc[ABC

pabclog2

pabc
pabpacpbc
papbpc

h i ð4Þ

QðABCDÞ ¼ QDðABCÞ2 QðABCÞ ¼
X

abcd[ABCD

pabcd log2

pabcd
pabcpabdpacdpbcdpapbpcpd

pabpacpadpbcpbdpcd

h i ; ð5Þ

which are recursively extendable to any number of variables. Within a set G of variables,

Q-measures can also be defined in terms of entropies H(X) as in (1):

QðGÞ ¼
X
X#G

ð21Þ1þjGj2jXjHðXÞ; ð6Þ

where X is a subset of G, jGj is the cardinality of G and jXj of X. Equations (1)–(3)

correspond to Shannon’s (Shannon and Weaver 1949) definition of entropy H and

information transmission T. The recursive extension to three or more variables, Equations

(4) and (5), is McGill’s (1954). I developed (6) in Ashby’s 1962–1963 in seminar and used

the logarithmic forms of (3)–(5) to prove their inadequacies (Krippendorff 1980). All of

the following generalisations are Ashby’s (1969), some of which were foreshadowed but

not fully appreciated by others. Much of the literature focuses on ternary interactions that

(6) generalised:

QðABCÞ ¼ 2HðAÞ2 HðBÞ2 HðCÞ þ HðABÞ þ HðACÞ þ HðBCÞ2 HðABCÞ: ð7Þ

Shannon defined the entropies in (1), as used in (2), (3), (6) and (7), in terms of

probability distributions and information as the difference between two entropies, for

example, between the entropy at a receiver H(R) without reference to a sender and HS(R)

by reference to the sender’s choices, the uncertainty Ubefore and Uafter a message was

received, or the entropy of an observed system and the hypothetical entropy of the

aggregate of its (unrelated) parts. Accordingly, the total amount of information in a system

of variables is the difference between the hypothetical entropy
P

HðXÞ, that regards all

variables X of a system within a set G of variables as independent of each other, and the

observed entropy H(G) in that system as a whole, i.e.:

TðGÞ ¼
X
X[G

HðXÞ2 HðGÞ: ð8Þ

For example, within just three variables:

TðA:B:CÞ ¼ HðAÞ þ HðBÞ þ HðCÞ2 HðABCÞ: ð9Þ

This convenient information calculus led Ashby (1969) to numerous accounting

equations, among which is the equality of the total amount of information in a system

(8), and the sum of all of its Q-quantities (6), allowing the total complexity in a system

to be decomposed into additive quantities, each notationally tied to its less complex

interaction components:

Tð:GÞ ¼
X
S#G

QðSÞ; ð10Þ

K. Krippendorff670
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where S is a subset of G containing at least two variables. This expression is elegant and

appealing for its simplicity. For three variables, (10) becomes:

TðA:B:CÞ ¼ QðABÞ þ QðACÞ þ QðBCÞ þ QðABCÞ; ð11Þ

the sum of all interactions in a system, here of three variables. Without always

appreciating the generality of these equations for decomposing the information in a system

into quantities associated with its constitutive parts, several authors found the use of Q-like

measures attractive indicators of the amount of information in interaction. Jakulin (2005)

reviewed numerous applications of this idea and justified his own use of Q-like measures

by reference to these. But how do these measures relate to the probability distributions on

which information theory is defined?

The probabilities in the numerators of (1)–(5) are observed probabilities, of course,

and they yield entropies as in (1). The probabilities papb in the denominator of (3) are

probabilities as well, in particular, of what can be expected when variables A and B are

statistically independent or yield maximum entropies. This is how far Shannon went.

However, the products of probabilities in the denominators of (4) and (5), and in all higher-

order Q-terms do not add to one (see Table 1 below for an example), cannot be interpreted

as probabilities, do not yield entropies as in (1), making it difficult to interpret Q for three

or more variables as a measure of information (Krippendorff 1980, 2009). Watnabe (1960)

noticed this before I knew of his work, considered these products to have ‘no profound

meanings’, and counselled against their use in information theory. Jakulin (2005)

recognised this as well, but after personal communications, Jakulin (2009.2.26 & 27)

acknowledged that while Q-measures are not perfect, they are good approximations to

maximum entropies and Leydesdorff (2009) sought other explanations to justify their

continued use. I consider salvaging this measure to be an exercise in futility and am

extending Watnabe’s judgment to all quantities that include these products. Q-quantities

may have other uses, and I will mention one below, but multivariate information measures

they are not.

But there are other reasons not to interpret Q-terms as measuring the information in

multi-variate interactions. Since McGill (1954), zero quantities of Q have been interpreted

as the absence of interactions (Garner and McGill 1956; Garner 1962; Matsuda 2000; Bell

2003; Jakulin 2005; Yeung 2008; Lucio-Arias and Leydesdorff 2009). This claim is

demonstrably false. Consider the application of (11) to data in Figure 1, which consist of

three separate frequency distributions in three dichotomous dimensions, resulting in

quantities of Q(ABC) of 21, 0 and þ1 respectively:

Example C visualises a non-decomposable interaction, in fact, the strongest

interaction possible in three dichotomous variables. Here, the total amount of information

TðA:B:CÞ in the system is taken up by Q(ABC). All three binary interactions are absent and

in this extreme case, and only then, Q(ABC) quantifies the visually apparent ternary

interaction in the data cube. The other extreme is found in example A. Here, Q(ABC) is

maximally negative. In this data cube, one may notice that any two of the three two-

dimensional frequency distributions are sufficient to reconstruct the three-dimensional

distribution in ABC, hence the ternary interaction is absent and any one of the three binary

interactions can be dropped for being superfluous in specifying the observed frequencies.

Equation (11) does not reflect this logic, however. All three binary interactions measure

maximum amounts of information, revealing Q(ABC) to be a left-over quantity that

compensates for the failure to exclude one of the redundant binary interactions.

International Journal of General Systems 671
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However, the main point of this demonstration may be seen with example B. Here,

QðABCÞ ¼ 0, supposedly indicating the absence of ternary interaction. Yet, the frequency

distribution in this data cube obviously is far from what could be expected by chance,

given the distributions observed in AB, AC and BC. The algebraic forms of (4) and (5)

notwithstanding, the example provides a visual demonstration that interpreting Q ¼ 0 as

indicating the absence of interaction is plainly mistaken when three or more variables are

involved. This statistical fact cannot be appreciated without actually observing how Q

responds to different frequency distributions, as in Figure 1.

To make sense of the peculiarity of negative and positive values of Q, Leydesdorff

(2009) relies on the analogy between entropies and Venn diagrams. Venn diagrams, which

depict all possible intersections of several sets, are widely used in conceptualising the

decomposition of entropies into all possible interactions among variables (e.g. McGill

1954; Theil 1972; Bell 2003; Yeung 2008). Accordingly, H(A) is analogue to the set A,

QðABÞ ¼ TðA:BÞ is analogue to the intersection A > B, Q(ABC) is analogue to the

intersection A> B> C, etc. But Leydesdorff goes beyond this analogy, locating

QðABCÞ , 0 in the intersection A> B> C inside the union A< B< C, but QðABCÞ . 0

outside the union A< B< C for which no entropy is defined. Analogies can be and in this

case clearly are misleading, as MacKay (2003, pp. 143–144) observed, not only because it

is far from obvious how elements in sets correspond to entropies, but also because of the

odd role of Q. In pursuit of this analogy and by reference to Abramson (1963) and

Leydesdorff (2009) defines his measure of mutual information as:

IðABCÞ ¼ HðAÞ þ HðBÞ þ HðCÞ2 HðABÞ2 HðACÞ2 HðBCÞ þ HðABC ¼ 2QðABCÞ;

ð12Þ

in effect adopting the Q-measure in (7) but with a negative sign, as if this would turn the

statistically uncertain quantity Q(ABC) into a proper information measure I(ABC) –

incidentally labelled m* in Lucio-Arias and Leydesdorff (2009) after Yeung (2008), and

equivalent to 2A0(uvw) in McGill (1954) and 2IðA;B;CÞ in Jakulin (2005). Leydesdorff

does not say how he would define his I for other than three variables. But because he

justifies his version of Q by reference to Abramson, it might be worth noting that

Abramson, Matsuda (2000), Bell (2003), Yeung (2008) and possibly others define IðGÞ ¼

QðGÞ for even numbers of variables, and IðGÞ ¼ 2QðGÞ for odd numbers of variables.

I have not found any motivation for the proposal of the odd/even reversal of the sign of Q.

There is a history of this sign-reversal. Quastler (1953) started with a similar definition but

shifted to McGill’s Q in their joint effort to standardise the nomenclature of information

theory (McGill and Quastler 1955). I am suggesting that this alternating sign-reversal does

not address Q’s problems, makes accounting equations for entropies unnecessarily

difficult – although in all fairness, unlike Ashby (1969), Leydesdorff is not concerned with

generalising accounts such as in (10) – but it demonstrates the common uncertainty about

Q’s meaning. Jakulin (2005, p. 37) even goes so far as to call any deviation from Q’s zero

value an ‘interaction magnitude’, in effect ignoring the sign and with it the differences in

frequency distributions in examples A and C. This raises the question: what could a

measure possibly mean whose zero point is unrelated to the absence of interactions and for

which some researchers interpret its positive values just as other researcher interpret its

negative values?

Jakulin (2005, p. 39ff) reviewed numerous studies from diverse disciplines ranging

from physics, chemistry, biology, cognitive science, to economics, including by

Leydesdorff and Meyer (2003), that have relied on Q in one form or another. I contend, the

K. Krippendorff672
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above demonstration calls all uses of Q-like measures for more than two variables into

question.

Without examining the strange behaviour of Q vis-à-vis the probability distributions to

which it responds, Leydesdorff (2009), relying on Garner and McGill’s (1956) observation

of parallels between their accounting information for information and the analysis of

variance, concludes that ‘the Q-measure is mathematically sound but an interpretation

from the perspective of information theory needs to be provided’. He then cites Jakulin

(2005) who called, following a suggestion by Gat (1999), positive Qs measures of synergy

and negative Qs measures of redundancy. In search for a meaning for negative measures,

Matsuda (2000) called them ‘frustrated correlations’ and frustrating they are! To find more

profound meanings for positive and negative Qs, Leydesdorff (2009) then links them to the

results of positive and negative feedback and to Maturana’s theory of autopoiesis.

Yet, circular causal feedback and self-production are dynamic and informationally closed

systems (Ashby 1956) whose complexities go far beyond the ability to represent them in

terms of simple multi-dimensional probability distributions, which Leydesdorff is

quantifying with Q. I am suggesting that abstract theoretical interpretations cannot rescue

Q from its problems. They merely obscure them. Garner and McGill observed nothing but

a conceptually intriguing analogy from which no mathematical soundness can be inferred.

This is not to questions the soundness of Q’s definitions and algebra, but this soundness

does not extend to its interpretation as an information measure. No theoretical

interpretation can change the uncertain relationship between Q and statistically evident

interactions.

What could replace the defective Qs and maintain the idea of decomposing the

information in a complex system into less complex subsystems, each associated with a

quantity of information they process?

To me, the answer to this question started to emerge as a result of a gestalt switch that

Klir (1978) introduced by representing sets of variables in subsystems of a larger system as

boxes and the variables they share as connections between them. This visualisation

revealed that all systems with three or more variables can contain circular dependencies.

It turned out that the probabilities in such loops can no longer be obtained by multiplying

the participating components’ probabilities, as undertaken in the denominators of (4) and

(5). Not acknowledging these loops caused all of Q’s oddities. I then used an iterative

algorithm (Krippendorff 1980, 2009), further developed (Krippendorff 1986) and

available at http://www.pdx.edu/sysc/research-discrete-multivariate-modeling (last

Figure 1. Accounts of three so-called interactions Q.

International Journal of General Systems 673
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accessed 7 April 2009), which goes around and around these circularities and converges on

the maximum entropy probability distribution, preserving the probability distributions of

the components of a system of variables. The use of this iterative algorithm also called for

reconceptualising the lattice of possible decompositions – incidentally not as simple as

those derived from Venn-diagrams and explored by Bell (2003) and Jakulin (2005) among

others. This lattice (Krippendorff 1986, p. 40; 2009, p. 198) emerges when removing,

starting from the unanalysed whole system m0, one interaction after another, each in the

context of the remaining interactions. This step-by-step removal of interactions from m0

creates progressively simpler models m1; . . . ;mi, miþ1; . . . ;mind of m0, mind being the

model consisting of independent variables. This process defines a path through this lattice

with increasing entropies HðmiÞ # Hðmiþ1Þ. The information in any one interaction then

became the difference between two entropies, the maximum entropy including and

excluding the interaction in question:

Iðmi ! miþ1Þ ¼ Hðmiþ1Þ2 HðmiÞ ¼
X

abc ...[ABC ...

vabc ... ðmiÞlog2vabc ... ðmiÞ

�
X

abc ...[ABC ...

vabc ... ðmiþ1Þlog2vabc ... ðmiþ1Þ

ð13Þ

where probabilities vabc ... ðmiÞ are the iteratively obtained maximum entropy probabilities

for the model mi of m0, and vabc ... ðmiþ1Þ for miþ1. All information measures are zero or

positive quantities and add to the total amount of information in a system, in effect

rescuing the idea of (10) from Q’s failures:

Tðm0Þ ¼ Iðm0 ! mindÞ ¼ Iðm0 ! m1Þ þ · · · þ Iðmi ! miþ1Þ þ · · · þ Iðm ... ! mindÞ: ð14Þ

Applying (14) to two kinds of data, depicted in Figure 2, yields accounts of the

information quantities involved, which can now be compared to the Q-quantities obtained

by (11).

The frequency distribution in example D is the same as in example B of Figure 1.

The decomposition of the total amount of information into its constitutive interactions

demonstrates that the measure of QðABCÞ ¼ 0 completely misses the ternary interaction,

visually evident in D’s data cube and measured as IðABC ! AB:AC:BCÞ ¼ 0:25 bits. The

data in example E are derived from D by removing its ternary interaction, representing the

maximum entropy frequency distribution, verifiably satisfying the original distributions in

the three binary interactions AB, AC and BC. Removing that ternary interaction from D

zeroes IðABC ! AB:AC:BCÞ in E and subtracts the corresponding 0.25 bits from E’s total

IðABC ! A:B:CÞ ¼ TðA:B:CÞ ¼ 0:80 ð¼1:05–0:25Þ as it should, but also from the

quantity Q(ABC)! This makes unquestionably clear that Q cannot be interpreted as

measuring a unique property of interactions. It is affected by something else.

But what does Q actually measure? This question led me (Krippendorff 1980,

p. 66) to distinguish two opposing quantities within Q, the correct amount of

information I in interactions and a measure of the over determination or redundancy

R in the algebraic specifications of these interactions. For the highest-order interaction

in ABC but absent from AB:AC:BC,

QðABCÞ ¼ IðABC ! AB:AC:BCÞ2 RðAB:AC:BCÞ: ð15Þ

Accordingly, Q is the difference between the interaction information I and the mistake

made by what one may call a Boolean observer who insists on accounting for that

K. Krippendorff674
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interaction algebraically, as in (6) and (7), not iteratively. Being a difference, Q cannot be

interpreted as a stand-alone measure of interaction, redundancy, or synergy, as

Leydesdorff (2009; Lucio-Arias and Leydesdorff 2009), Jakulin (2005), and many others

claim. Jakulin (2005, p. 41) may have intuited the involvement of redundancy in Q when

he writes ‘Negative interactions (meaning Q) imply redundancy, which may be complete

or partial’. But under the mistaken assumption that Q ¼ 0 measured the absence of

interaction, he identified positive Qs as measures of synergy and negative Qs as measures

of redundancy. Equation (15) suggests a more complicated relationship between these

quantities. It does not suggest that Q ‘is to be discarded as incompatible with information

theory’, as Leydesdorff (2009) reads me as saying. It provides to be the key to a measure of

the redundancy in the algebraic specification of interactions:

Rðm1Þ ¼ Iðm0 ! m1Þ2 Qðm0Þ: ð16Þ

The notations in the arguments of I, Q, R reveal their conceptual difference.

Q-quantities are defined in terms of the variables of an interaction, whereas I- and R-

measures also take account of how the remaining components interact with one another.

Information quantities in (13) are context sensitive, Q-quantities in (11) are not. The

arguments in R refer to call components of a system absent the interaction that I is

measuring. According to (16), in example D, RðAB:AC:BCÞ ¼ IðABC ! AB:AC:

BCÞ2 QðABCÞ ¼ 0:25 bits. The first binary interaction, IðAB:AC:BC ! AC:BCÞ

contributes 0.10 bits of information, not QðABÞ ¼ 0:35, while the second and third

binary interactions contribute all of their information, 0.35 bits each, to the total.

Generalising (16) to any model mi of m0 and taking full advantage of (10) for each of

the interactions removed from m0, yields:

RðmiÞ ¼ Iðm0 ! miÞ2
X

K#G andK�mi

QðKÞ; ð17Þ

where K is a subset of the set G of a system’s variables and K � mi prevents K from being

contained in any of mi’s components. R is positive when the algebraic account exaggerates

the information in mi and negative otherwise. Leydesdorff provided an empirical example

Figure 2. Accounts of example B in Figure 1 with and without its ternary interaction.

International Journal of General Systems 675
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for negative redundancies (see Jakulin 2009.4.17) Evidently, the algebraically obtained Q

is not as simple and unproblematic as its proponents take it to be. Its positive and negative

quantities bear a more complex relationship to I(m0 ! m1)

Note that interactions with loops entail positive or negative redundancies, those

without loops do not. Loops can be complex, especially in systems with many variables.

For example, while the model AB:AC:BC in three variables contains just one loop, A—

B—C—A, the model ABC:ABD:ACD:BCD in four variables contains seven. Even a

relatively simple structure, ABC:ABD:CD, contains two loops, A—C—D—A and

B—C—D—B, whose redundancy, according to (17), would amount to:

RðABC:ABD:CDÞ ¼ IðABCD! ABC:ABD:CDÞ2 QðABCDÞ2 QðACDÞ2 QðBCDÞ:

When removing CD from ABC:ABD:CD both loops disappear and the resulting

redundancy becomes

RðABC:ABDÞ¼ IðABCD!ABC:ABDÞ2QðABCDÞ2QðACDÞ2QðBCDÞ2QðCDÞ¼0:

I am suggesting that accounting for the redundancy in the specifications of interactions

resolves the problems of interpreting negative Q-values. As already discussed, in example

A, the distribution of frequencies in ABC can be reconstructed from any two faces of the

data cube, say AC and BC. Quantitatively, IðABC ! AB:AC:BCÞ ¼ 0 bits indicates the

absence of ternary interactions. With QðABCÞ ¼ –1, redundancy measures RðAB:AC:

BCÞ ¼ 1 bit, which accounts for the redundant binary interaction in AB. Removing AB

from AB :AC :BC yields RðAC:BCÞ ¼ IðABC ! AC:BCÞ 2QðABCÞ2 QðABÞ ¼ 0, which

quantitatively accounts for the fact that AC and BC are sufficient to reconstruct ABC. In

example D, the information IðABC ! AB:AC:BCÞ and redundancy RðAB:AC:BCÞ are

0.25 bits each, cancelling each other in Q, explain why QðABCÞ ¼ 0, and demonstrate, as

already discussed, Q’s failure to reveal the existence of the ternary interaction present in

the data. Example C exhibits no redundancy whatsoever, RðAB:AC:BCÞ ¼ 0, and the total

absence of redundancy is the only condition under which Q can be interpreted as an

information measure of interaction. Thus, the measure of redundancy in (17) rescues Q

from obscurity but disqualifies it as a stand-alone measure of anything so far considered. It

becomes an intermediate computational step to the measure of redundancy or of the over-

or under-specification of interactions by the Boolean logic of algebiaic accounts.

The above demonstrations lead me to disagree with Leydesdorff (2009) assessment

that measures of information in systems with circularities are ‘theoretically

incommensurable with Shannon’s and Ashby’s program’. Shannon’s axioms (Shannon

and Weaver 1949, pp. 18–20), which lead him to his conception of entropy, information,

and bits as their units of measurement, apply in full to interactions that are more complex

than the binary ones he explored, and the idea of Ashby’s accounting equations for

interactions in complex systems is preserved in (14). What is to be faulted is the

assumption that one could obtain maximum entropy probabilities for systems with circular

dependencies by multiplying its participating components’ probabilities, or obtaining

information quantities of interaction algebraically, as attempted in (4)–(6). Q results from

an inappropriate use of probability theory on which information theory is defined.

Two points remain to be made. First, since McGill, the recursively extendable

definition of Q in (3)–(5), etc. has lead to a seemingly plausible interpretation, reproduced

by many users of Q-like quantities. According to McGill (1954, p. 101) QCðABÞ2 QðABÞ

in (4) ‘is the gain (or loss) in sample information transmitted between any two of the

variables, due to additional knowledge of the third variable’. If C causes the interactions in
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AB, or must be present for this interaction to occur, then, arguably, QCðABÞ . QðABÞ, and

QðABCÞ . 0 would be the extent to which C controls unique combinations of values in AB

over and above observing AB in isolation. By the same logic, if C weakens the interaction

in AB, Q , 0. As Jakulin (2005, p. 41) explains, ‘positive interactions (meaning

Q-quantities) imply that the introduction of the new attribute (C) increased the amount of

dependence (between A and B). A disappearance of a dependence is a kind of negative

interaction: negative interactions imply that the introduction of the new attribute

decreased the amount of dependence. If C does not affect the dependence between A and

B, we say there is no 3-interaction’. This interpretation hides a hitch that may surface when

examining what QC(AB) actually measures.

Slicing the data cube in example C into any two planes, say along the values of

variable C, c [ {0,1} ¼ C, reveals two frequency distributions ABc¼ 0 and ABc¼ 1.

They could not be more different from each other, clearly demonstrating the difference

that C makes for the relationship between A and B, in fact causing the two correlations to

flip into their opposites. Qc¼0ðABÞ and Qc¼1ðABÞ measure 1 bit each and average to

QCðABÞ ¼ 1 bit as well. With QðABÞ ¼ 0, QðABCÞ ¼ QCðABÞ ¼ 1 bit. But note that

QC(AB) is an average amount of information. It does not respond to whether the two

distributions ABc¼ 0 and ABc¼ 1 are same or different, that is, whether they are

independent of C or change with C. In this example, the interpretation seems to work, but

only because redundancy is absent, as discussed above.

To see what happens in a less perfect interaction, consider the data cube from

example D. For any one variable, say again C, the frequency distributions in slice ABc¼ 0

and slice ABc¼ 1 are unequal as well, also demonstrating how variations in C affect AB.

Even quantitatively, Qc¼0ðABÞ ¼ 0:65 bits is unlike Qc¼1ðABÞ ¼ 0:05 bits, but they

average to QCðABÞ ¼
1
2
ð0:65 þ 0:05Þ ¼ 0:35 bits. Since QðABÞ ¼ 0:35 bits as well,

QðABCÞ ¼ QCðABÞ2 QðABÞ ¼ 0. Evidently, QC(AB) fails to recognise C’s obvious

correlation with unique combinations of frequencies in AB, quite unlike what the common

interpretation of (4) alleges. Why? Averages do not respond to variability. QC(AB) wipes

out the very variability on which evidence of C’s effect on AB relies. The difference

between the distributions in ABc¼ 0;ABc¼ 1. and AB is captured by IðABC ! AB:AC:BCÞ

but not by QC(AB). Thus, the interpretation of conditional Q-measures as the extent to

which interactions depend on an additional variable is true only (a) when redundancy

happens to be absent, and (b) on the average – whatever an average dependency means.

Thus, the common interpretation of the difference QC(AB) 2 Q(AB) in (4) obscures the

substance of its claim (to respond to an increase or decrease in interaction due to the effect

on another variable). While (1)–(3) define proper entropy and information quantities,

recursively extending Q to three or more variables, as suggested in (4) and (5), etc.,

recursively obscures the interpretability of Q beyond the sense it makes in (3).

Finally, I wish to dispel the claim that Q is a useful approximation to the amount of

information in interactions. Jakulin (2005) conducted numerous simulations comparing

various interaction measures to each other and concluded, reiterated in Jakulin

(2009.2.27), that Q-like measures are useful approximations of interaction information, so

close as to declare them information measures, labelling them IðA;B;C; . . . Þ, and thereby

erasing the necessary doubt in their uncritical users’ minds.

Consider just one numerical example, the observed frequencies nabc in example B of

Figure 1 or D of Figure 2, tabulated in Table 1.

Table 1 also lists the probabilities pabc(m0 )
¼ nabc/n of the original data or in model

m0 ¼ ABC and the maximum entropy probabilities vabcðm1Þ in model m1 ¼ AB:AC:BC,

which omits the ternary interaction potentially present in m0. The probabilities in m1 may
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also be examined as frequencies, rounded for convenience, in the data cube in example E

of Figure 2. The next column lists the denominators of Q(ABC) from (4). If Q would be an

information measure, this denominator would have to be a probability. Since it sums to

1.2960, not 1.0000, it is not, as already noted. The frequency distribution that Q implies,

also called the normalised Kirkwood superposition approximation (KSA, Jakulin 2005,

pp. 60–61), can now be compared to the maximum entropy distribution of frequencies it is

claimed to approximate. These two sets of frequencies are tabulated side by side in the last

column of Table 1. Obviously, they are far from similar. With a x2 ¼ 181; v ¼ 3 degrees

of freedom, the null-hypothesis that these distributions are the same has to be rejected at a

level of significance p ¼ 0:0001. This finding, admittedly for just one but nevertheless

quite ordinary example, is extraordinarily conclusive and recommends rejecting the

hypothesis that Q-like quantities approximate interaction information measures.

Jakulin (2009.2.27) argues that Q-like measures have proven useful in numerous

applications and cites an impressive number of reinventions of Q (2005, p. 39ff).

However, incidences of use do not establish validity. Validity criteria might include

evidence that Q-like measures are predictive of something worth knowing or advance the

understanding of a phenomenon for which other measures are lacking. To my knowledge,

such demonstrations have not been provided. Mere quantifications mean nothing without

additional evidence.

It is unclear to me why Jakulin, who is cognizant of algorithms for calculating

maximum entropy distributions (Jakulin 2005, p. 61ff), settled on measures that behave so

oddly. With the availability of faster and more powerful computers, calculating Q-like

measures algebraically is no longer an important convenience over calculating Iðmi ! mjÞ

iteratively. Jakulin (2009.2.26) granted that much without noticing two opposing measures

of information and redundancy in Q, known for some time to be due to circularities in

higher-order interactions. I suspect that the promoters of Q-like measures manifest

the predilection of mathematically inclined researchers for elegant calculi, shying away

the somewhat tedious examinations of what they indicate empirically.
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