
Figure 10: Output of an execution (10 Hz) of the trajectory gen-
erator, a single trajectory will be chosen from this set.

Where the parameters (a, b, c, sf ) can now be expressed as:

a(p) = p0 (21)

b(p) = −11p0 − 18p1 + 9p2 − 2p3
2sf

(22)

c(p) =
9 ∗ (2p0 − 5p1 + 4p2 − p3)

2s2f
(23)

d(p) = −9(p0 − 3p1 + 3p2 − p3)

2s3f
(24)

Which results in the following initialization heuristic:

p0 = κ0 = κi (25)

p1 = κ1 =
1

49
(8b(sf − si)− 26κ0 − κ3) (26)

p2 = κ2 =
1

4
(κ3 − 2κ0 + 5κ1) (27)

p3 = κ3 = κf (28)

Finally, with an initial guess in hand, and a stable re-
parameterization the local planner can solve a simple gradient
descent problem to drive the vehicle to the goal posture.

Thus, we can now compute a set of parameterized trajec-
tories which may each be evaluated to test for safety and op-
timality. A description of these aspects of the planner may be
found in [17] and such a cost function can obviously be mod-
ified based on the goals of the design team. We note that our
algorithm implementation is parallelized using OpenMP such
that multiple trajectories (with goals regularly sampled around
the initial goal) may be evaluated simultaneously. Furthermore,
with small changes we can also support quintic splines which
expand the variety of possible maneuvers and are more suitable
for high speed driving. Figure 10 shows an example of a trajec-
tory generation instance.

Specification
Formal verification requires both a system model and a speci-
fication. This means that the project stakeholders must provide
an exact definition of the desirable system properties. Further-
more, it is often the case that such properties are expressed as
occurring only under certain conditions. For convenience we
provide the symbols used to describe the vehicle specification
in Table 4.

Table 4: Symbols for Specifications
Symbol List

Symbol Units Description
k - Search Depth
φ - Ego Vehicle Spec
ξ - Environment Spec
LC Boolean Lane Change Request
LO Boolean Lane Occupied
vego m/s Velocity of Ego Vehicle
sxego m Position of Ego Vehicle, x
syego m Position of Ego Vehicle, y
vlimit m/s Speed Limit
sxref

m Centerline Reference, x
syref m Centerline Reference, y

w(sxref
, syref ) m Lane Width
B m Buffer
r m Collision Radius
t s Current Timestep

tmax s Max Timestep
2 - Always
→ - Implies
¬ - Not
∧ - And
∨ - Or

An example specification follows: the ego vehicle should
drive in the selected lane at the speed limit unless a stop sign
is encountered. We note that the traffic laws of a given region
provide a partial, but informal definition of many of the high
level specifications which the ego vehicle should adhere to.

Ego Vehicle Specifcation
The specification for the ego vehicle has two components:
safety properties and liveness properties. A specification for
the ego vehicle in the case study follows:

• The ego vehicle travels at a velocity less than or equal to
the speed limit

2 (vego ≤ vlimit) (29)

• The ego vehicle does not drive backwards

2 (vego ≥ 0) (30)

• The ego vehicle does not collide with any of the n other
objects in the environment

2

� q
(sxego

− sxenvi
)2 + (syego − syenvi

)2 ≥ r
�

∀i = 1...n (31)

• If a timed lane change request is invoked, the ego vehicle
completes the lane change on time.

2
�
LC →

�
syego > w

�
∧ (t ≤ tmax)

�
(32)

Environment Specification
The other vehicles operating within a scenario present both an
interesting challenge and a primary motivation for formal veri-
fication. It is clear that it is impossible to know the intentions of
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the agents operating such vehicles; their execution represents a
significant source of non-determinism. In fact, a more complex
model of such agents which includes details such as steering an-
gle or tire friction will not enable less conservative results, for
it is the control input not the plant that remains the largest un-
known. Thus, we conclude that: for verifying the autonomous
agent, only the perceptible behavior of other agents is impor-
tant, not their internal structure.

Still it remains clear that the behavior of other agents must
be part of the scenario description. As such we present a safety
case which assumes that other agents will follow a certain min-
imal set of driving rules. For brevity we will reference the fol-
lowing specification as ξ in the case studies.

• Acceleration ceases when some maximum velocity is
reached.

2 (venv ≥ vmax → a = 0) (33)

• Other agents must drive in the proper direction according
to their lane.

2 (venv ≥ 0) (34)

• The accelerations of other agents are within those rates
achievable by maximum engine power

2 (aenv ≤ amax) (35)

• Other agents maintain their lanes unless explicitly speci-
fied not to.

2 (¬LC → (ymin ≤ syenv
) ∧ (ymax ≥ syenv

)) (36)

• Lane changes by other agents are only permitted if the al-
ternate lane is unoccupied or unless a degenerate scenario
is being modeled.

2 (LO → ¬LC) (37)

APEX internals and theory
APEX maintains an internal representation of the scenario as a
hybrid system. The components of this hybrid system are:

• The behavioral planners of all vehicles involved,
B1, . . . ,Bm. Fig. 11 shows the behavioral planner we used
in the case study for a lane change. A behavioral planner
is a finite state system. We will refer to each state of a
behavioral planner as a mode.

• For every vehicle, the continuous dynamics involved in
each of the modes of its behavioral planner. In general, dif-
ferent modes may require different dynamics: e.g. a Col-
lision Avoidance mode which is invoked when a collision
is imminent requires more stability control than a turn at
a low speed. The continuous dynamics are given in terms
of Ordinary Differential Equations (ODEs) ẋi = fi(xi),
where xi ∈ Rn is the continuous state of the ith agent.

• For each vehicle, transition conditions between the modes
of the behavioral planner Bi are expressed in terms of the
state vector xi. The planner transitions between two modes

q and q′ only if a guard condition Gq,q′ is satisfied. In
general, the guard condition for Bi is expressed as a set
in the state space of all the agents, since transitions will
occur based on, for example, how close two vehicles are to
each other. Specifically, let x = (x1, . . . , xn) combine the
states xi of the individual vehicles. So x ∈ Rn·m. Then
there’s a transition between two states q and q′ of Bi only
if x ∈ Gqq′ ⊂ Rn·m. For example, there’s a LF-to-LC
transition only if the two cars are closer than 10m and the
following car is faster than the leading car. In this case
GLF,LC = {x | ||x1 − x2|| ≤ 10 ∧ v2 > v1}.

Together, these make up a hybrid system, so-called because it
combines discrete dynamics in the behavioral planner with con-
tinuous dynamics in each mode. We will refer to the n hybrid
systems of the n agents in the scenario as H1, . . . , Hm. The
state of the scenario x is simply x = (x1, . . . , xn).

APEX does not keep an internal representation of the motion
planner. Rather, as explained in earlier sections, APEX issues
calls to the motion planner in the course of the verification, and
obtains a trajectory from it.

APEX also needs to maintain a description of the scenario
specification. This specification is provided by the user and can
be any formula in first-order logic over the set of modes and
states of all agents. See the Case Study.For example the follow-
ing is a possible specification:

Mode1 = LC → |ψ̇| ≤ b

The following sections describe how APEX verifies a prop-
erty of the scenario using this internal representation.

Execution tree and formal model
Let B be a behavioral planner of a given vehicle. The for-
mal model of the behavioral planner is a finite transition sys-
tem B = (Q, q0,Σ,→) where Q is the finite set of modes,
q0 is the initial mode, Σ is a set of output labels, and →⊂
Q × Σ × Q is the labeled transition relation of the system.
We write q σ−→ q′ for (q, σ, q′) ∈−→. Fig. 11 shows the be-
havioral planner that is used by APEX by default for mod-
eling a lane change controller. It can be described as B =
({LC,LF}, LF,Rn, {(LF,LF ), (LF,LC), (LC,LF )}). In
mode LF, the vehicle’s goal is to follow the current lane. In
mode LC, the vehicle’s goal is to change lanes. In general, a
mode represents a decision by the controller, a behavior that the
vehicle should follow. With every transition between modes,
the behavioral planner outputs a vector xB in Rn: this is the
destination that the vehicle must reach. The planner transitions
between modes when certain guard conditions are satisfied.

The behavioral planner advances in discrete time. The dis-
crete time advances, for example, with every update of the ve-
hicle’s sensors. Thus B makes a decision on what to do ev-
erytime its information about the environment is updated. The
planner may decide to maintain the current decision, i.e., stay
in the same mode, if that mode has a self-loop. Mode LF has
a self-loop in Fig. 11. Let ∆t > 0 be the update period. Since
every scenario is time-limited, and every transition takes fixed
non-zero time ∆t, there is a natural limit D on the number of
decisions, or transitions, that can be taken in any given scenario.

9



In the first step of the verification process, APEX builds an
execution tree: the root of the tree is the initial mode q0, and
every branch of the tree represents one possible sequence of
decisions, i.e. one possible execution of B. See Fig. 13 for the
execution tree of the behavioral planner of Fig. 11. Since the
number of transitions is bounded by D in a given scenario, this
tree has a depth at most D.

With the execution tree built, APEX must next verify that
the sequence of decisions taken by the behavioral planner
can be implemented by the low-level controllers. E.g., let
(LF,LF,LC) be a sequence of decisions of depth 3. In ev-
ery occurrence of LF, APEX must check that the vehicle can
indeed follow the lane, and in every occurrence of LC, APEX
must verify that the vehicle can indeed change lanes. In the
next section, we define what it means to ‘follow the lane’ and
’change lanes’ via the motion planner.

Calling the motion planner
After building the execution tree, APEX starts executing every
branch, starting at the root, which is the initial mode q0. The
initial set of continuous states is X0. A transition is taken if the
initial set intersects its guard. SinceX0 may intersect more than
one guard, then more than one transition are possible. APEX
explores all transitions (all branches) in the execution tree. In
each mode APEX enters, B will output a destination xB . For-
mally, xB is a scenario state, but in what remains, it is simpler
to think of it as the position that the ego vehicle must reach.

APEX then calls the motion planner to obtain the trajec-
tory that the vehicle will follow. Since the current state is only
known as a set XA, APEX sets the starting point of the trajec-
tory to be the center xA ofXA. The motion planner then returns
a trajectory starting at xA and ending in a neighborhood of xB .
The neighborhood shape and size are known to APEX and are
part of the motion planner’s description. Let that neighborhood
be XB . Note that APEX does not place any restrictions on the
motion planner’s operation and calls it as a black box. There-
fore, the actual motion planner that is used on the real car can
be used in the verification of the system. In this way the ver-
ification results are directly applicable to the actual deployed
software.

Verifying each trajectory
Once a trajectory is generated connecting xA ∈ XA to the
neighborhood XB of xB , it remains to verify that the ego ve-
hicle will always reach XB within a specified amount of time
T , regardless of where it starts in XA. To verify that the spec-
ification is satisfied, APEX builds a reachability problem. This
reachability problem is characterized by the following:

• The system: in this case, the system consists of the sce-
nario hybrid system.

• The target set: this is the set that the system should reach.
In this case the state of the ego vehicle x1 should reach
XB , and there are no target sets for the other agents.

• The unsafe set: this is the set that the scenario hybrid sys-
tem must not reach at any point in time. In this case, the
ego vehicle must not get closer than dmin to any other
agent in the scenario.

Figure 11: An automaton describing a simplistic behavior plan-
ner for lane changes

• A time bound: the target set must be reached within a cer-
tain amount of time T .

We call the above a bounded reachability problem. To solve
this problem, APEX passes it to dReach [12], a reachability
analysis tool for nonlinear hybrid systems. dReach answers the
question: is there a trajectory of the vehicle starting in XA that
will violate the constraints? (e.g. will not reach the target set
XB or will get too close to another vehicle). dReach returns one
of two answers. If the answer dReach returns is SAFE, then it
is guaranteed that no behavior of the ego vehicle will violate
the constraints. It should be stressed that this is a mathematical
guarantee: no amount of simulation in this case will reveal a
violation, because dReach guarantees that no such violation ex-
ists. If dReach answers δ-UNSAFE, then this means that there
exists a behavior of the ego vehicle which, when perturbed by
an amount δ > 0, violates the constraints. See Fig. 4. The
parameter δ can be set by the user. It suffices to choose δ small
enough so δ-SAT means the system is not robust since a small
perturbation of size δ could cause it to violate the constraints.

Case Study
We briefly introduce and expand on the concept of driving sce-
narios to help reason about inherently diverse situations and re-
quirements which an autonomous vehicle might face.

An unsafe lane change scenario
The following example describes a lane change scenario in the
context of a mission and mobility goals. In this description we
imply a valid local planning solution, and seek to verify that all
possible individual trajectories which are selected in the execu-
tion of the plan are safe. First, in Scenario 1 we will demon-
strate a dangerous condition that could have been missed un-
der testing or simulation. Next, in Scenario 2 we will show
how a refinement in the requirements on the perception sys-
tem or a refinement in the behavioral controller can lead to a
provably safe maneuver. Finally, in Scenario 3 we demonstrate
how a change in manufacturer specification can be accurately
assessed for safety. To perform verification, we employ dReach
version 3.15.10.02 on a Mac OSX laptop with Intel(R) Core
i7(R) 2.60GHz CPU and 16 GB memory, and the results are
provided in Table 5.

Scenario 1 (A simple lane change and goal) As shown in
Fig. 12, the ego vehicle is driving in the right lane of a
uni-directional two lane road network. Another car is driving
in front of the ego vehicle at a lower speed. We include
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the extreme case where the environmental vehicle stops. We
highlight that when there is significant uncertainty regarding
the ego vehicles orientation and that it may deviate (initially)
from the reference trajectory (dashed line) while the tracking
controller recovers. We note that the specification of the
environment and the ego-vehicle in this scenario are defined as
ξ and φ respectively.

Behavioral controller
We associate a behavioral controller B1 with Scenario 1. Figure
11 details the controller, where LC means “Lane Change” and
LF means “Lane Follow”. Table 5 records the parameters. It is
a simple finite state deterministic automaton. We note, that this
particular behavior controller is almost surely too simplistic to
cover all of the scenarios faced by an actual vehicle, neverthe-
less it illustrates how we may formally represent a set of rules
which instantiate certain behavior classes on an autonomous ve-
hicle. Similar examples have been published by Darpa Urban
Challenge participants []. Both controllers generated via rein-
forcement learning and reactive behavior controllers created via
synthesis may be represented as deterministic finite automatons.
As our current goal is to demonstrate that verification is possi-
ble, rather than the richness of the scenarios that the behavioral
controller can handle, we find this controller suitable.

Given any deterministic finite automaton it is possible to ex-
press as a computational logic tree. Such a tree is rooted in a
single state, is infinite in size, and represents a branching notion
of time; that is each state (moment in time) may split into mul-
tiple possible future worlds. As we will explain in the following
sections, such a representation is at the heart of the APEX ap-
proach and verification occurs over a bounded search depth on
such a computation tree.

We present the initialization of the scenario and the results
of the verification. Table 5 contains the initialization of each
parameter.

Verification and Result
Finally, for the lane change case, we define an additional con-
straint set Runsafe as well as a goal set representing the max-
imum allowable deviation from the goal state. Runsafe ex-
presses that the system fails if it still hasn’t changed lanes within
2 sec or it collides with the car ahead of it.

((sy < w) ∧ (t > 2)) ∨ ((sy < w) ∧ (sx− ε > sxenv )) (38)

Then, using APEX we attempt to show that there is no
execution of the system which can enter Runsafe. How-

Figure 12: A lane change scenario that could have been missed
in testing due to nonintuitive and uncountably infinite set of ini-
tial conditions. This scenario is unsafe for certain inter-vehicle
buffer spacing and reachability analysis determines the mini-
mum spacing to achieve a safe lance change.

Figure 13: An automaton describing a simplistic behavior plan-
ner for Lane Following (LF) and Lane Changes (LC)

Table 5: Verification Results
Symbol Scenario 1 Scenario 2 Scenario 3
w 3.7 3.7 3.7
B 15 20 20
δ 0.1 0.1 0.1
vego [10.8, 11.1] [10.9, 11] [10.9, 11]
sxego [0.0, 0.5] [0.0, 0.5] [0.0, 0.5]
syego [0.0, 0.1] [0.0, 0.05] [0.0, 0.05]
Ψ [0.0, 0.1] [0.0, 0.1] [0.0, 0.2]
Search Depth 2 2 2
Verification Time (s) 30.821 373.924 36.166
Result δ-UNSAFE SAFE δ-UNSAFE

ever, because the system is incorrectly designed dReach returns
δ-UNSAFE.

A safe lane change scenario
Using the information and counterexample from the previous
scenario it is easy to see that the behavior controller must be
corrected in order to guarantee safety of the lane change sce-
nario.
Scenario 2 (A more conservative behavioral controller)
We begin with Scenario 1. In order to ensure the forward
safety of the vehicle we propose a small modification to the
behavioral controller of the vehicle, and furthermore require
that the ego vehicle’s localization system return estimates with
less uncertainty. Namely, we first increase the size of variable
buffer, so that the ego vehicle is forced to initiate a lane change
maneuver earlier. Secondly, we decrease the size of the initial
sets. Speed v now starts anywhere in [10.9, 11] and sy starts in
[0.0,0.05].

With these changes, dReal returns SAFE, meaning that no
trajectory of the system violates the constraints.

A supplier issues a specification change
Given that a safe controller has been found a supplier wishes
to know if they may reduce the accuracy of several key sensors
associated with localization of the ego vehicle. Such a speci-
fication change is known to add significant uncertainty to the
estimate of the ego vehicle’s heading angle during the planning
phase.
Scenario 3 (Large perception errors) We begin with Sce-
nario 2. In order to reflect the change in supplier specification
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we update the localization system return estimates to reflect
greater uncertainty. Namely, we increase the size of the intial
set for ego vehicle heading such that Ψ starts in [0.0,0.2].

The result of this modification is again δ-UNSAFE, because
the ego vehicle clips the rear bumper of the environmental ve-
hicle while executing the lane change maneuver. Again the en-
gineer in charge of the project may use the new information to
refine the controller design or reject the suppliers specification
change. In this way formal verification efforts can be a useful
tool in determining the requirements which sensors and percep-
tion systems must meet given a particular control algorithm.

Conclusion
APEX is a tool for formally verifying the trajectory planning
and tracking stacks of ADAS/AV cars. It can perform formal
verification on realistic autonomous vehicle planning stacks. In
this paper we demonstrate a case study which formally verifies
a lane change maneuver. Future work will incorporate more
complex behavioral controllers for other scenarios, including
synthesized planners, and will add a GUI to the tool as well as
a means of visualizing complex counterexamples.
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