January 2002

Modeling and Analyzing Biomolecular Networks

Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Calin Belta
University of Pennsylvania

R. Vijay Kumar
University of Pennsylvania, kumar@grasp.upenn.edu

Max L. Mintz
University of Pennsylvania, mintz@cis.upenn.edu

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/100
For more information, please contact repository@pobox.upenn.edu.
Modeling and Analyzing Biomolecular Networks

Abstract
The authors argue for the need to model and analyze biological networks at molecular and cellular levels. They propose a computational toolbox for biologists. Central to their approach is the paradigm of hybrid models in which discrete events are combined with continuous differential equations to capture switching behavior.

Keywords
biocomputing, biomolecular electronics, discrete event simulation, stochastic systems, agents, biological networks, biomolecular networks, cellular levels, computational toolbox, discrete events, genetic circuits, hybrid models, modes, molecular levels, switching behavior

Author(s)
Rajeev Alur, Calin Belta, R. Vijay Kumar, Max L. Mintz, George J. Pappas, Harvey Rubin, and Jonathan Schug
We now know that approximately 30,000 to 40,000 genes effectively control and regulate the human body. The recent completion of a rough draft of the human genome and the complete sequence of Drosophila melanogaster, Caenorhabditis elegans, Mycobacterium tuberculosis, and numerous other sequencing projects provide a vast amount of genomic data for further refinement and analysis. These landmarks in human scientific achievement promise remarkable advances in our understanding of fundamental biological processes. To achieve this goal, we must develop the ability to model, analyze, and predict the effect of the products of specific genes and genetic networks on cell and tissue function.

Traditional models and simulations of metabolic and cellular control pathways are based on either continuous or discrete dynamics. However, many important biological systems are hybrid—they involve both discrete and continuous dynamics. At the molecular level, the fundamental process of inhibitor proteins turning off the transcription of genes by RNA polymerase reflects a switch between two continuous processes. This is perhaps most clearly manifested in the classic lambda switch system, where we see two biological processes. At the cellular level, we can best describe cell growth and division in a eukaryotic cell as a sequence of four processes, each one a continuous process triggered by a set of conditions. At the intercellular level, we can even view cell differentiation as a hybrid system.

In all of these examples, a hybrid approach that combines elements of discrete and continuous dynamics is necessary to model, analyze, and simulate the system’s richness. To understand how a network of biochemical reactions implements and controls cellular functions and the genetic regulatory apparatus, we must develop a new set of theories, algorithms, and methodologies that combine the two fundamentally different ways of characterizing such systems.

We advocate modeling biological systems as stochastic, networked hybrid systems that consist of discrete and continuous components with complex interactions. Even in many continuous biological systems characterized by differential equations, a hybrid model offers a computationally tractable approach to modeling, analysis, and synthesis. Networks model the in-
teraction between hybrid subsystems. Significant nondeterministic fluctuations in the exogenous variables and structural components within the dynamic system that we cannot model deterministically underscore the need to consider stochastic models for such systems. We should adopt a similar perspective for complex, computer-controlled electromechanical systems. Robotics, avionics, and embedded systems are intrinsically hybrid. The control software’s complexity coupled with the communication networks and their interaction with the physical environment make designing and analyzing such embedded systems a great challenge, particularly in safety-critical applications. No systematic approach to designing and developing such hybrid systems exists today.

In this article, we describe the enabling technologies needed to understand and predict the integrated functions of cellular regulatory networks. We describe the models and abstract principles of organization, design, control, and coordination. We also outline a research agenda that emphasizes hybrid modeling of biological systems, the use of formal methods and algorithms for simulation and analysis, and a software environment for analysis and design.

Modeling biomolecular networks

The genetic circuits and biomolecular networks considered here and elsewhere are remarkably similar to the hybrid systems encountered in engineering. Our approach to modeling the different elements and their interactions is based on modern concepts in software engineering and control theory.

Species and processes

Central to our approach are the concepts of agents and modes. An agent is a dynamic system that interacts with other agents through well-defined input and output ports. Agents operate concurrently. All species—proteins, cells, and DNA—are dynamic systems and therefore modeled as agents (see Figure 1). We call them S-agents to distinguish them from process agents or P-agents, which capture the dynamics involved in transcription, translation, protein binding, protein–protein interactions, and cell growth. The inputs of P-agents are the quantities (concentrations or numbers) of different species relevant to the process; outputs are rates. S-agents describe the accumulation or degradation of species in terms of concentration or simply numbers. An S-agent’s description necessarily involves differential equations or update equations. These equations take as inputs the rates of different processes and yield species’ quantity. As Figure 1 shows, concurrent processes govern the species. The processes communicate with each other and influence each other’s behavior. A similar picture occurs at the intercellular level, where we can view cells as S-agents interacting with each other through different processes that capture intercellular signaling or simple growth based on nutrient availability.

Agents and modes

Each agent is characterized by a continuous state $x \in \mathbb{R}^n$ and a collection of discrete modes denoted by Q. Each mode is characterized by a set of ordinary differential equations that govern the evolution of the continuous state x and a set of invariants that describe the conditions (typically algebraic constraints on the continuous state) under which the ODEs are valid. We can write the ODEs as

$$\dot{x} = f_q(x, z),$$

where $q \in Q \subset Z$ is the agent’s mode, and $z \in \mathbb{R}^p$ is the information from other agents available through the input/output ports. A mode’s definition includes transitions among its submodes. A transition specifies source and destination modes, the enabling condition, and the associated discrete update of variables. Each
mode can have submodes; there is generally a hierarchy of modes that typifies most systems.

As an illustrative example, consider the description of the agent in Figure 2. It consists of two discrete modes q_1 and q_2; the continuous variable x, which evolves under the differential equation $\dot{x} = f_1(x)$ in discrete mode q_1; and $\dot{x} = f_2(x)$ in mode q_2. The invariant sets associated with locations q_1 and q_2 are $g_1(x) \leq 0$ and $g_2(x) \leq 0$, respectively. The hybrid system continuously evolves in discrete mode q_1 according to the differential equation $\dot{x} = f_1(x)$ as long as x remains inside the invariant set $g_1(x) \leq 0$. Transitions between modes are governed by a set of guards called a guard set. Each guard is typically an algebraic constraint on the state. If, during the continuous flow, it happens that x belongs in the guard set $G_{12}(x) \leq 0$, then the transition from q_1 to q_2 is enabled. A state jumps from q_1 to q_2, and the system evolves according to the differential equation in mode q_2 as long as the invariant $g_2(x) \leq 0$ is satisfied.

Typed variables—discrete or analog—characterize an agent. Analog variables are updated continuously, whereas discrete variables are updated only on initialization and mode switches. An agent’s variables are partitioned into read, write, and private to allow modular specifications. Private variables represent those that are internal to the agent and depict its internal state.

At the lowest level, differential equations such as in Equation 1 can describe the evolution of entities such as proteins. A generic formula for any molecular species (messenger RNA, protein, protein complex, or small molecule) reflects this:15

$$\frac{dX}{dt} = \text{synthesis} - \text{decay} \pm \text{transformation} \pm \text{transport}. \quad (2)$$

The synthesis term represents transcription for mRNA and translation for proteins; the decay category represents a first-order degradation process. Many molecules undergo transformations such as cleavage or ligand-binding reactions—many participate in transport processes such as diffusion through a membrane. However, at low concentrations, we cannot justify continuous rate equations based on concentrations. We must use stochastic process models that predict the numbers of molecules of different species.16,17

The hybrid structure in the models arises in two ways. First, a certain activity might be trig-
gered by an increase in concentration of a protein or other species above a specified threshold. This leads to switching between active and dormant states. Second, different models might be more appropriate at different levels of concentration. The process models must incorporate this ability to switch between differential equations and the discrete update equations used in stochastic models.

Continuous versus hybrid models

A promoter, the region of DNA that is needed for the initiation of gene transcription, typically has multiple regulatory sites, both positive and negative, distributed throughout its regulatory region. We generally model regulation with two functions:

$$\Phi(X, \kappa_{Xm}, \nu_{Xm}) = \frac{X^{\nu_{Xm}}}{\kappa_{Xm}^{\nu_{Xm}} + X^{\nu_{Xm}}} , \quad (3)$$

and

$$\Psi(X, \kappa_{Xm}, \nu_{Xm}) = 1 - \Phi(X, \kappa_{Xm}, \nu_{Xm}) , \quad (4)$$

where X is the concentration of some species with a regulatory effect on the transcription of mRNA m, ν_{Xm} is called the cooperativity coefficient, and κ_{Xm} is the concentration of X at which transcription of m is “half-maximally” activated. Figure 3 shows the graph of function Φ, the so-called sigmoid function.

The curve describing the regulation of transcription in Figure 3 is merely a convenient way of modeling the turning off of gene expression at low concentrations and the turning on at high concentrations. Little experimental data confirms the sigmoid curve’s exact shape in the figure and we lack the data needed to estimate parameters such as κ and ν (as in Equation 3). In the absence of such data, it is simpler to pursue piecewise constant approximations that map the degree of gene transcription activation (inhibition) to intervals of activator (inhibitor) concentration. Figure 3 shows a two-step model that effectively turns off gene expression completely below a certain concentration of the regulator and turns it on completely above that concentration. We can also imagine a more sophisticated n-step approximation based on n experimental data points. From a system-analysis viewpoint, dealing with such piecewise constant functions to describe transcription is definitely advantageous. They let us abstract a nonlinear system as a switched, lower dimensional system that could be easier to analyze because of the sigmoid nonlinearity’s absence.

We can use approximations similar to Figure 3 at different levels in the system hierarchy. These approximations lead to abstractions that are conceptually similar and computationally more tractable, but the ability to validate the fidelity of these models through analysis and experimentation is also necessary.

Charon: A programming language for hybrid systems

We developed the programming language Charon for modeling and analyzing hybrid systems (see Figure 4). The language incorporates ideas from concurrency theory (languages such as CSP), object-oriented software design notations (such as Statecharts and UML), and formal models for hybrid systems (such as hybrid automata and hybrid I/O automata). Charon’s key features are

- **Architectural hierarchy.** The building block for describing the system architecture is an agent that communicates with its environment by sharing variables. The language supports composing agents to model concurrency, hiding variables to restrict information sharing, and instantiating agents to support reuse.

- **Behavior hierarchy.** The building block for describing control flow inside an atomic agent is a mode, which is basically a hierarchical state machine. A mode can have submodes and transitions connecting them. Variables are declared locally inside any mode with standard scoping rules for visibility. Modes connect to each other only through well-defined entry and exit points. We allow sharing of modes so that the same mode definition can be instantiated in multiple contexts. To support exceptions, the language allows group transitions from default exit points that apply to all enclosing modes.

- **Discrete updates.** Guarded actions label the transitions that connect modes to specify discrete updates. Actions can have calls to externally defined Java functions, which we can use to write complex data manipulations. They also let us mimic stochastic aspects through randomization.

- **Continuous updates.** Some of the variables in Charon are analog, and they flow continuously during updates that model the passage of time. We can constrain the evolution of analog variables in three ways: differential constraints (equations such as $\dot{x} = f(x, u)$), algebraic con-
constraints (such as $y = g(x, u)$), and invariants (such as $|x - y| \leq \varepsilon$) that limit the allowed flow duration. Such constraints are declared at different levels of the mode hierarchy.

Charon’s modular features allow succinct and structured description of complex systems. Languages such as Shift24 and Stateflow (see www.mathworks.com) support similar features, but in Charon, modularity is not solely apparent in syntax. We are developing analysis tools (such as simulation) to exploit this modularity. Furthermore, Charon has formal foundations supporting compositional refinement calculus, which allows relating different models of the system in a mathematically precise manner. A formal mathematical description lets us develop tools for computing equilibria and for analyzing properties such as stability and reachability.

Software tools for system biology

Recent efforts have addressed the complexity of developing continuous system models and simulators for genetic networks.25 Thousands of differential equations with hundreds of modes and inequality constraints will characterize hybrid system models for biology and robotics. Accuracy is extremely important in such systems. Unlike continuous or discrete systems, small errors in detecting the violation of unilateral constraints can completely change the state’s ensuing time history.

Many important issues arise in the context of hybrid systems simulation. First, accurately simulating systems of differential equations with inequalities of state is important. Failure to detect events can have disastrous effects on the global solution due to the problem’s discontinuous nature. Second, complex multiagent systems have multiple spatial and temporal timescales. Multirate numerical integration methods26 that let us simulate the individual components of a set of coupled ODEs at different rates are extremely relevant. Models properly specified and programmed in Charon will explicitly describe spatiotemporal hierarchy and concurrency in multiagent systems, thus allowing efficient simulation. Finally, we must consider simulating systems of stochastic differential equations.

In our previous work, we developed a control-theoretic approach that correctly detects an event for certain classes of constraints and guarantees that the ODE is never evaluated on the opposite side of the switching surface ($g(x) = 0$).

To exploit spatiotemporal hierarchy, we have considered systems that naturally exhibit a hierarchical structure and a model in a language such as Charon that preserves this hierarchical structure. Commercial packages such as Matlab don’t do this. Elsewhere27 we present a method that exploits hierarchy to improve efficiency without degrading the system’s accuracy.

Our ultimate goal is to develop a simulation technique that can simulate each agent asynchronously when the agent is far from the nearest constraint surface, allowing each agent to be integrated with its own largest acceptable step size and increasing the simulation’s overall efficiency. As the system of agents approaches constraints...
that affect one or more of them, the relevant local time clocks automatically synchronize to properly detect and localize the violation of constraints in state space and in time.27

Formal verification

Model checking is emerging as a powerful technique for detecting logical errors, thus ensuring higher safety and reliability for embedded software. In model checking, a high-level model is compared to a correctness requirement to reveal inconsistencies. Model checking is largely automated and relies on an exhaustive state-space analysis of the model. Researchers originally developed reachability and verification tools for finite-state discrete systems; they have recently extended them to special classes of hybrid systems such as timed automata, linear hybrid automata,28 and piecewise linear systems.

We are interested in the organism’s survival in the biological realm where we consider a metabolomechanical system—the cell and the embedded computer—to be the genetically encoded program. This approach to formal analysis lets researchers establish useful properties of models of biomolecular networks and provide useful feedback for designing biological experiments. For example, in a regulatory network, we might hypothesize if the concentration of protein A in the environment stays between c_l and c_h, then the concentration of regulatory protein B stays below an activation threshold δ. Affirmation or violation of such hypotheses by model checking can help us understand the behavioral interdependencies of complex pathways. Similarly, reachability analysis can establish biological properties—for example, we can establish the existence of cellular rhythms or the stability of a mode of operation.

There are many recent and significant advances on computing reachable sets for hybrid systems. You can use HyTech to verify linear hybrid automata. CheckMate and d/dt can handle more complex systems.29 In particular, CheckMate can help compute reachable sets for nonlinear systems of low dimension. The package d/dt can handle linear differential inclusions and lends itself to the analysis of our switched linear system.

Control

Nonlinear control theory offers analytical tools for establishing properties such as small-time local controllability, global controllability, and stability.10 These tools can be valuable in establishing the relationship between inputs or signaling mechanisms and regulated variables in biology.

Traditional control theory mostly enables the design of controllers in a single mode of operation in which the task and the system model are fixed.10 When operating in unstructured or dynamic environments with many different sources of uncertainty, designing controllers that guarantee performance, even in a local sense, is difficult if not impossible.31 In contrast, we also know that designing reactive controllers or behaviors that react to simple stimuli or commands from the environment is relatively easy. We can see successful applications of this idea in subsumption architectures and their derivatives in robotics.32,33 Similarly, biology is full of examples of such simple controllers—in some cases they are well understood.6,34 Although control and estimation theory let us model each behavior as a dynamical system and provide us with design and analysis tools, we currently do not have tools for more complex systems that involve

- switches in behavior or sequential composition of modes;
- hierarchical composition of modes; or
- parallel composition of agents (or concurrent operation of behaviors).

There is potentially a lot to gain by specializing existing tools and facilitating analysis of biological systems. Applications of geometric control theory could yield insight into the regulation of proteins along the hybrid system’s flow. Tools from optimal control theory could synthesize open loop controls that might point experimental biologists to new paradigms for experimentation.

Issues of robustness and fault tolerance are of special importance. Biological systems have built-in mechanisms that provide robustness and fault tolerance. It is particularly important to understand how random fluctuations affect regulation in hybrid systems where precision and reliability are required.35

Case study: Quorum sensing in $V. fischeri$

A good illustration of a multicellular network is the cell-density-dependent gene expression seen in prokaryotes. In this process, a single cell can sense when a quorum of bacteria—a minimum population unit—is achieved. Under these conditions, the quorum efficiently performs certain behavior such as bioluminescence, the best-known model for understanding the mechanism of cell-density-dependent gene expression.
Vibrio fischeri is a marine bacterium found both as a free-living organism and as a symbiont of some marine fish and squid. As a free-living organism, *V. fischeri* exists at low densities and appears to be nonluminescent. As a symbiont, the bacterium lives at high densities and is usually luminescent. In a liquid culture, the bacterium’s level of luminescence is low until the culture reaches mid to late exponential phase. Later, in stationary phase, the bioluminescence level decreases. The transcriptional activation of the lux genes in the bacterium controls this luminescence.

The lux regulon is organized into two transcriptional units: \(O_L \) and \(O_R \) (see Figure 5). \(O_L \) contains the *luxR* gene that encodes the protein LuxR, a transcriptional regulator of the system. (We use italics to indicate the genes and roman text to denote the protein the gene expresses.) \(O_R \) contains seven genes *luxICDABEG*. The transcription of the *luxI* gene produces the protein LuxI, which is required for endogenous production of the autoinducer \(Ai \), a small membrane-permeable signal molecule (acyl-homoserine lactone). The genes *luxA* and *luxB* code for the luciferase subunits, and *luxC*, *luxD*, and *luxE* code for proteins of the fatty acid reductase, which generates aldehyde substrate for luciferase. The *luxG* gene is thought to encode a flavin reductase. Along with LuxR and LuxI, cAMP receptor protein (CRP) plays an important role in controlling luminescence.

The network of biochemical reactions in the cell is as follows. The autoinducer \(Ai \) binds to protein LuxR to form a complex \(Co \), which binds to the *lux box* in Figure 5. The lux box is in the middle of a regulatory region between the two transcriptional units (operons). This region also contains a binding site for CRP. The transcription from the *luxR* promoter is activated by the binding of CRP to its binding site—the transcription of the *luxICDABEG* by the binding of \(Co \) to the lux box. However, growth in the levels of \(Co \) and cAMP/CRP inhibit *luxR* and *luxICDABEG* transcription, respectively. These feedback loops are shown through dotted arrows with + and – signs in Figure 5.

Model

Our model of bioluminescence in *V. fischeri* consists of nine state variables, each representing the evolution of an S-agent. \(x_0 \) represents the cell population, whereas the \(x_1 \) through \(x_8 \) represent nanomolar concentrations of mRNAs and proteins. This model is described by

\[
\begin{align*}
\dot{x}_1 &= k_2 x_0 \\
\dot{x}_i &= T_i(x_{i-1} + k_{i-1} x_{i-1} - k_i x_i) - \frac{x_i}{H_{G1}} - k_{i+1} x_{i+1} \\
\dot{x}_8 &= x_0 (\epsilon_{CRP} x_4 - r_{CRP} x_8) - x_k / \mu_{ai} \\
\dot{x}_k &= r_{CRP} x_8 - x_k / \mu_{CRP} - k_{i+1} x_{i+1} \\
\end{align*}
\]

where

\[
k_G = k_3 (1 - x_0 / x_{0\text{max}})
\]

and \(x_i \) are nonnegative real numbers:

\[
\begin{align*}
x_0 &= \text{scaled population (population} \times v_i / V), \\
x_1 &= \text{mRNA transcribed from}\ O_L, \\
x_2 &= \text{mRNA transcribed from}\ O_R, \\
x_3 &= \text{protein LuxR,} \\
x_4 &= \text{protein LuxI,} \\
x_5 &= \text{protein LuxA/B,} \\
x_6 &= \text{protein LuxC/D/E,} \\
x_7 &= \text{autoinducer} Ai, \\
x_8 &= \text{complex}\ Co.
\end{align*}
\]

Table 1 gives the parameters in Equation 5.

\(\epsilon_{CRP} \) denotes the CRP concentration in the bacterium.

Our hybrid model is obtained by approximating the functions \(\Phi \) and \(\Psi \) by piecewise constant functions. Assume \(m \) levels of activation of the *luxICDABEG* gene at \(\epsilon_0, \epsilon_1, \ldots, \epsilon_{m-1} \) with \(\epsilon_0 = 0 \).
and $c_{m-1} = 1$. The luxICDABEG gene’s level of activation is c_i when
\[x_{8_i}^0 < x_8^j < x_{8_i}^{j+1} , \]
where
\[x_{8_i}^0 = 0 \quad \text{and} \quad x_{8_i}^{m} = \infty. \]

Similarly, for the luxR gene, we assume n steps at $d_0, d_1, \ldots, d_{m-1}$, $d_0 = 0$, $d_{m-1} = 1$, and the activation is at level d_j when
\[c_{CRP}^j < c_{CRP}^* < c_{CRP}^{j+1}. \]

The continuous, nine-dimensional system is now replaced by a hybrid system with mn distinct modes. (More specifically, this is an example of a switched system, a special case of a hybrid system.) The modes are indexed by $i = 1, \ldots, m-1$ and $j = 1, \ldots, n-1$, and a seven-dimensional system describes dynamics in each mode.

Figure 6a shows log-linear plots of numerical simulations of the continuous system, for a constant c_{CRP} of 10nM. The population (bottom) grows from 10^5 to 10^9 over approximately 15 hours then remains constant for an additional 20 hours. For all the species, there is a short initial adjustment period when protein, complex, and Ai concentrations reach a nearly constant state at low population density, which lasts for roughly eight hours. LuxR is abundant, ready to sense increases in population density, which lasts for roughly eight hours. The concentration function for arbitrary parameters are difficult due to the essentially nonlinear behavior of the activation functions. For the simplified hybrid system, the nonlinearities involve products of the continuous state variables. We considered a fully grown population (x_0 is constant). Carefully analyzing the timescales governing the system shows that the mRNA dynamics are fast compared to other dynamics, and we can assume the corresponding mRNA concentrations are constant in each mode (i,j):

\[x_i^j = H_{RNA} T [(1 - c_i) d_j + b] , x_i^j = H_{RNA} T [c_i (1 - d_j) + b] . \]

The system’s dynamic properties in mode (i,j) are completely determined by the time evolution of the reduced system:

\[\dot{x} = Ax + g(x) + b, x = [x_3 x_4 x_5 x_8]^T , \]

where A is a constant 4×4 matrix, b is a 4×1 vector dependent on the mode (i,j), and g is a 4×1 vector, which is quadratic in x_3 and x_7. The invariant sets as described earlier are given by

\[x_{8_{sw}}^i < x_8^j < x_{8_{sw}}^{i+1} \land c_{CRP}^j < c_{CRP}^* < c_{CRP}^{j+1}. \]

As shown elsewhere, each mode (i,j) has a unique equilibrium. Studying each equilibrium point’s stability reduces to examining the eigenvalues of the Jacobian matrix for each mode. We
implemented this set of calculations in a Mathematica notebook and showed that all equilibrium points are stable.

This stability result is a local one. In other words, this computation simply shows that under small perturbations from an equilibrium, the system will return to the equilibrium point. However, we can do better. We used the vanishing perturbation technique in our previous work39 to construct an ellipsoidal region of attraction around the equilibrium point’s origin.

Besides stability, another interesting question for both biologists and control engineers would be what makes the system switch among modes. Or, from a synthesis viewpoint, what parameters or variables can we artificially modify to promote the production of luciferase, the proteins that eventually result in luminescence. Analyzing the system in Equation 9 gives us some insight into this. For example, a careful inspection of the directional derivatives of the output x_5 along the flow of the system shows that this variable is directly affected by the transcription of luxICD-ABEG (x_2), indirectly by the production of CRP, and even more indirectly by the production of the Ai (x_8). From a synthetic biology standpoint, we now have three avenues to increase the production of luciferase.

Reachability analysis

Another interesting question from a biologist’s standpoint relates to reachability. For example, can a cell population from a specified initial condition reach an equilibrium that corresponds to luminescence? The equilibrium’s stability does not answer this question because it only indicates that if the system reaches a region around the stable point, then it will move to the equilibrium point.

This is a so-called reachability problem. Consider the mutant of $V. fischeri$ described elsewhere37 that disrupts the operon structure and thus the regulatory system described earlier. In the mutant, the luxR gene is deleted from its normal location, and a copy is placed in a plasmid (a separate piece of DNA) and incorporated back into $V. fischeri$. The plasmid copy of luxR is under a different promoter’s control, which yields a constant high rate of transcription unaffected by any of the molecules described earlier. We assume a constant concentration of protein LuxR (justified in this model), and the CRP concentration is low (regulation kept at $d_0 = 0$). The model becomes linear with the nontrivial dynamics in mode (i, j) being described by

$$\dot{x} = \bar{A} \bar{x} + \bar{b}_y,$$

where $\bar{x} = [x_4 x_5 x_8]^T$, \bar{A} is a constant 3×3 matrix, and \bar{b}_y is a 3×1 vector that depends on the mode. Although the associated Jacobian’s eigenvalues show that the equilibrium points are asymptotically stable37 the stability result is not a global one. The eigenvalue analysis tells us that if the system starts from a point within a region of attraction around the equilibrium of the mode (i, j), it converges to the equilibrium point. However,
even if the dynamics are linear, it does not tell us anything about initial conditions that could lie elsewhere (possibly in a different mode). This is the main motivation for reachability analysis.

We are interested in computing the set of states that converge to the equilibrium point x_{lum}^e in the luminescent mode. Figure 7 shows the results of a reachability analysis performed with d/dt, a software package that uses polyhedra to over- or underapproximate reachable sets of hybrid automata. For our problem, we need an underapproximation because we must make sure that all the states in the computed set go to the equilibrium x_{lum}^e.

We envision the link between hybrid systems of technology and biology to strengthen. The scalable nature of computational tools such as Charon will enable the unified and improved modeling of biological cellular networks, leading to better understanding and providing us with the opportunity to determine how local biological changes can affect global behavior. Conversely, a good understanding of the robustness of noisy biological networks will lead to new approaches to designing networked embedded systems. Efforts such as ours can only succeed if they are closely tied to research in experimental biology. Our goal is to provide the analytical and computational tools that biologists can use in a fashion that complements experimental research.

References

Figure 7. The set of states that are driven to the luminescent equilibrium by switching on the lux gene.
Max Mintz is a professor of computer and information science and chair of the undergraduate Computer Science and Engineering Program at the University of Pennsylvania. His research interests include modeling, identification, and control of dynamic systems; statistical decision theory with applications to machine perception and robotics; and the development of algorithms that achieve guaranteed performance in decentralized estimation and control of uncertain dynamic systems. He received his BEE, MS, and PhD from Cornell University. Contact him at the GRASP Laboratory, Room 301, 3401 Walnut St., Univ. of Pennsylvania, Philadelphia, PA 19104-6228; mintz@central.cis.upenn.edu.

George J. Pappas is an assistant professor of electrical engineering at the University of Pennsylvania. His research interests include embedded hybrid systems, hierarchical control systems, nonlinear control systems, geometric control theory, flight and air traffic management systems, robotics, and unmanned aerial vehicles. He received a BS and MS in computer and systems engineering, both from Rensselaer Polytechnic Institute, and a PhD in electrical engineering and computer sciences from the University of California at Berkeley. Contact him at the Dept. of Electrical Engineering, 200 South 33rd St., Univ. of Pennsylvania, Philadelphia, PA 19104; pappasg@ee.upenn.edu.

Harvey Rubin is a professor in the School of Medicine at the University of Pennsylvania. His research interests include elucidating the genetic and metabolic regulatory networks that allow tuberculosis to persist in the human host for years, determination of the molecular basis of serine protease inhibition, and the mathematical modeling of complex biomolecular systems. He received a PhD in molecular biology from the University of Pennsylvania and a MD from Columbia University. Contact him at the School of Medicine, Univ. of Pennsylvania, 522 Johnson Pavilion, Philadelphia PA 19104; http://mail.med.upenn.edu/~rubinh.

Jonathan Schug received his BA in mathematics and MSE in computer and information science from the University of Pennsylvania. He is currently pursuing his PhD in computer and information science. His research interests include the regulation of gene expression and the analysis of promoter and other DNA sequences. Contact him at the Center for Bioinformatics, Univ. of Pennsylvania, 1315 Blockley Hall, Philadelphia, PA 19014-6021; jschug@pcbi.upenn.edu.