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Figure 9: Top: comparison of the fit on the test data between the baseline
model RMSE (0.187) and an inaccurate model (RMSE 0.538). Bottom:
comparison between the MPC performance of the models. The red-regions
indicated the peak pricing period for the day.

MPC has soft temperature constraints, the zone temperature
is slightly above the temperature set-point, requiring it to use
less cooling energy.

Having implemented MPC for the baseline model, we now
use models trained on perturbed data and compare their per-
formance with the baseline case. This allows us to observe the
trend between MPC performance and model accuracy. An ex-
ample of such a simulation run is shown in Fig. 9, which com-
pares the baseline model with a relatively inaccurate model
(with a much higher RMSE of 0.538 compared to 0.187 for
the baseline model). Obviously an inaccurate model performs
poorly compared to the “good” baseline case. The total en-
ergy consumption was 91.68 kW h, a 2.2% saving from the
case without MPC. The total energy cost was 492.53 units,
only 3.77% reduction compared to 13.63% for the baseline
case. Several inverse models with different degrees of accu-
racy, in terms of their testing RMSE, were run with the MPC
controller. Their savings, measured against the case when no
MPC was used, are shown in Fig. 10. The trend of the plot
aligns with intuition and shows that MPC performance de-
teriorates as the underlying model becomes less accurate. It
can also be seen that the potential savings of MPC deteriorates
quite rapidly as the model accuracy decreases (i.e., test RMSE
increases). In the left region of the plot there is a positive cost
benefit associated with adding additional sensors to improve
the model accuracy from RMSE of 0.331 to 0.187. However,
if the model accuracy is in the right region of the plot then
there is no cost benefit associated with adding additional sen-
sors to obtain improved models upto a certain RMSE thresh-
old (0.331), beyond which the MPC savings are significant.

We have seen that models can lose their predictive perfor-
mance if they are trained on uncertain (biased) data. The input
uncertainty analysis reveals the extent to which different in-
puts are responsible for the accuracy of the inverse model. By
empirically establishing a relationship between model accu-
racy and MPC performance, one can take informed decisions
about the investment on additional sensors and the associated
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Figure 10: MPC performance for models of different degrees of accuracy.

Figure 11: 3D view of Building 101, the site chosen for the case study and
the location of suite 210 in the north-wing of the building.

cost benefit for improving the data quality. In the next section
we apply the Model-IQ toolbox on a model for a real building
using real sensor data.

5. CASE STUDY WITH REAL DATA
In this section we present the results of applying the Model-
IQ approach, described in Section 3, to real sensor data. First,
we calculate the bias in the input data due to sensor placement.
We then perform an input uncertainty analysis on the training
data and the building inverse model.

The site chosen for analysis is called Building 101. Build-
ing 101, located in the Navy Yard in Philadelphia, is the tem-
porary headquarters of the U.S. Department of Energy’s En-
ergy Efficient Building Hub [20]. It is a highly instrumented
commercial building where the acquired data is continuously
stored and is made available to Hub researchers. The build-
ing (see Fig. 11, top), is comprised of offices, a lunchroom,
mechanical spaces, and miscellaneous spaces. For the case
study, we focus on suite 210, a large office space on the sec-
ond floor of the north-wing of the building as shown in Fig. 11
(bottom). This zone has a single external wall on the east side
with 8 windows, a large interior wall on the west side which
is adjacent to the porch area on the north-wing and two more
adjacent walls on the north and the south side. In July 2013,
functional tests were run from 00:00, 20-07-2013 to 22:29,
20-07-2013, on the air handling unit serving suite 210 as a
part of an ongoing Hub project. During a functional test, the
supply air temperature is changed rapidly so there is enough
thermal excitation in the zone to generate a rich data-set for
learning its dynamical model.

5.1 Sensor Placement and Data Quality
We first show how the location of the sensor effects the quality
of measured data. We compared the thermostat measurement
of suite 210 in building 101 with the mean of several temper-
ature measurements made in the same zone but at different
locations. A single point temperature measurement of a zone
is based on the assumption that the air inside the zone is well
mixed. The aim of our experiment was to analyze tempera-
ture data from suite 210 and determine if there is any location
bias in the thermostat reading. The true value of the tempera-
ture of a zone (air volume) is extremely hard to determine. A
better approximation of the true zone temperature is mean of
temperature measurements taken from sensors which are uni-
formly located in the zone. Suite 210 at building 101 contains
several sensors which log air temperature at different loca-
tions int he zone. The layout of the zone and the location of



Figure 12: Temperature sensor locations for suite 210. The thermostat is
located on the right wall. The location of 4 IAQ temperature data loggers and
the portable temperature sensor cart is also shown.
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Figure 13: Comparison of thermostat reading and the mean temperature read-
ing for suite 210. The bottom figure plots residuals between the two data-sets.

the temperature sensors is shown in Figure 12. There are a
total of six different locations in the zone where air temper-
ature is logged. The zone thermostat is placed on the south
wall. There are 4 indoor air quality (IAQ) sensors which also
measure zone temperature placed on the west, north and the
east wall. An additional source of temperature measurement
is a portable cart which measures temperatures at 8 different
height levels. Since the different temperature sensors are lo-
cated around the zone in a uniform manner, the mean of all
the temperature measurements is a better representation of the
zone temperature. The mean temperature value is compared
with the thermostat measurement in Fig. 13. The values of
the residuals are plotted. It can be seen that the difference be-
tween the thermostat and the mean temperature can be upto
4◦F . This suggests that the reading of the thermostat may be
biased due to its location. The mean deviation in the tempera-
ture value is 0.71◦F while the mean thermostat measurement
is 75.8◦F which is about 1% bias in the thermostat data. We
will observe later that this can have a significant effect on the
model accuracy for this zone. Another way to compare the
two data-sets is through a scatter plot between the mean tem-
perature and the thermostat reading. Figure 14 shows such a
comparison along with a histogram plot for each axis. Two
main inferences can be drawn form this plot. First, the spread
of the data reveals how much the thermostat reading deviates
from the mean temperature. A lower spread indicates that the
two measurements are in agreement and that the well mixed

assumption holds well for the zone. Second, the histogram of
the data-sets reveals that the thermostat data has a much larger
variance that the mean temperature measurement.

5.2 Model-IQ implementation for Suite 210
We created the lumped parameter RC-network model for suite
210 using the principles described in Section 2. The model
has 9 states, 9 inputs and 1 output. There are a total of 22 RC
parameters in the model structure for this zone.

The temperature inputs to the model were the ambient tem-
perature Ta(◦C), boundary condition for the floor Tf (◦C) given
by the temperature of the zone on the first floor underneath
suite 210, boundary condition for the ceiling Tc(

◦C) given
by the temperature of the zone on the third floor above suite
210 and temperature of the adjacent porch area Tp(◦C). The
external solar irradiation Qsole incident on the east wall is
logged by a pyranometer. For the internal heat gain calcula-
tion, we consider 3 different heat sources: occupants, lighting
and appliances. The number of people in the zone at different
times during the functional test period was estimated using
data from the people counter. We assume, using ISO standard
7730, that in a typical office environment the occupants are
seated, involved in light activity and emit 75 (W) of total heat
gain, 30% of which is convective and 70% is radiative gain.
Using the power rating of the lighting fixtures and their effi-
ciency, one can calculate the heat gain due to lighting. In this
zone, lights contribute about 13 (W/m2) with a 40% − 60%
split between the convective and the radiative part. A constant
heat gain due to the electrical appliances and computers is also
assumed. The total internal convective heat gain Qconv was
obtained by adding the convective gain contributions from the
three different heat gain sources. The total internal radiative
heat gain was obtained in a similar way. The total internal ra-
diative gain is further split into the radiative gain on the exter-
nal wall Qqgrade and the radiative gain on the ceiling Qqgradc
and applied as two separate inputs. The sensible cooling rate
Qsen was calculated using the temperature and mass flow rate
measurements for the supply and the return air.

The sampling rate of the data was 1 minute. The total avail-
able data was split into a training set (80% of the data) and a
test set (remaining 20% data). All the inputs for training the
inverse model are shown in Figure 15. The output of the in-
verse model is the zone temperature Tz . After completion of
the training process, the zone temperature predicted by the
model is compared with the actual value of the zone tempera-
ture for both the training and the test period. The results of the

Figure 14: Scatter plot between the mean temperature measurement (y-axis)
and the thermostat reading (x-axis). The spread of a data indicates the bias
between the thermostat and the mean temperature measurement.
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Figure 15: Training data for suite 210 of Building 101. The data obtained
by running a functional test on the zone’s air handling unit from 20-07-2013
00:00 to 20-07-2013 22:29

inverse model training are shown in Figure 16. The RMSE for
the training data-set was 0.062 with R2 equal to 0.983 (Fig-
ure 16, top) while the RMSE and R2 values for the test set
were 0.091 and 0.948 respectively (Figure 16, bottom).

After successfully training the inverse model, we conducted
an input uncertainty analysis on the input-output training data-
set as described in Section 3.2. The model trained on unper-
turbed data serves as the baseline model for the uncertainty
analysis. Similar to the case of the single-zone TRNSYS
model, we created artificial data-sets from the training data by
perturbing each input data stream within [−20%, 20%] of the
unperturbed values in increments of 1%. For this case study,
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Figure 16: Fit between the predicted and actual zone temperature in suite
210. Top: for the training period, with RMSE = 0.062 and R2 = 0.983.
Bottom: for the test period with RMSE = 0.091 and R2 = 0.948.

we also wanted to characterize the influence of uncertainty in
the output of the model, the zone temperature, on the accuracy
of the model. Therefore, in addition to the 9 aforementioned
model inputs, perturbations were also introduced in the output
training data-set i.e., in Tz . With 40 additional data-sets each,
there were a total of 400 artificial data-sets. Each of these
data-sets were used again for model training and the resulting
model was evaluated for its accuracy in terms of the RMSE
on the test-set.

5.3 Results
The results of the input uncertainty analysis for suite 210 in
Building 101 are shown in Figure 17. Yet, again we see the
parabolic trend obtained as a result of “artificial” uncertainty
in the training data for each of the training data-sets. The
sensitivity coefficients for the different training inputs were
calculated. Figure 18 shows the comparison of the model ac-
curacy sensitivity coefficients for the inverse model for suite
210. It is seen that the zone temperature has the largest model
accuracy sensitivity coefficient suggesting that the accuracy of
the model is quite sensitive to the zone temperature measure-
ment. We saw in Section 5.1 that the thermostat measurement
has an uncertainty bias of about 1%. From figure 17(j), we see
that this can affect the model accuracy by upto 20%. This sug-
gests that for this zone, it would be better to deploy additional
low-cost wireless sensors just during the model training phase
and get a better estimate of the zone temperature for training
the inverse model. Also, the mean value obtained by adding
more sensors could be used to re-calibrate or correct the ther-
mostat reading for location bias, resulting in data which can
yield an inverse model which can better represent the dynam-
ics of the zone.
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Figure 18: Model accuracy sensitivity coefficients for Building 101
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Figure 17: Input uncertainty analysis results for Building 101 inverse model. The x axis shows the magnitude of the perturbation in percent change from the
unperturbed data while the y axis is the percent change in the model accuracy compared to the RMSE for the model trained on unperturbed data. The following
inputs are shown: (a) ambient temperature (◦C); (b) porch temperature (◦C); (c) incident solar irradiation on the external walls (W); (d) and (e) radiative internal
heat gain on external wall and ceiling (W); (f) convective internal heat gain (W); (g) sensible cooling rate (W); (h) floor temperature (◦C); (i) ceiling temperature
(◦C), and (j) zone temperature (◦C)

6. RELATED WORK
6.1 Model predictive control related
The treatment and analysis of the implementation of model
based control schemes like MPC and optimal control for build-
ings have been very thorough. [10, 14] describe the imple-
mentation of MPC for energy efficient operation of buildings,
supported by strong case studies. In [17] the authors consider
uncertainty in the prediction of disturbances and propose a
stochastic version of MPC. In [12], a reduced order model has
been used for MPC. [18] advocates the use of simpler building
models based on the physical description of the building. The
authors highlight the building modeling process as a crucial
part for building predictive control.

6.2 Sensitivity analysis related
Parametric sensitivity analysis of a model reveals the impor-
tant parameters of the model which most significantly affect
the model output. In [13], important input design parame-
ters are identified and analyzed from points of view of annual
building energy consumption, peak design loads and building
load profiles. In [9], the authors extend traditional sensitiv-
ity analysis and increase the size of analysis by studying the
influence of about 1000 parameters.

6.3 Uncertainty related
It is only recently in [2, 5] and [19], that researchers have
analyzed the uncertainty in modeling for close loop control.
In [2], the authors acknowledge that the performance of ad-
vanced control algorithms depends on the estimation accu-
racy of the parameters of the model. They design an MPC
algorithm using a control model that is structurally identi-
cal to the plant model but has perturbed parameters. The
closed loop system is simulated and the impact of the param-
eter perturbations on the energy cost is evaluated. Although,
this methodology bears some similarity with the Model-IQ
approach, there are some key differences. First, for a fixed
model structure, the model parameters can change either due
to the estimation process or due to the quality of data. The

cause of the parameter change has not been addressed in their
work. So although one can identify which parameters should
be estimated well, it is not clear how can one get a good es-
timate for that parameter. Second, the use of the same model
as the control and the plant model is debatable. Realisti-
cally, the control model can only be an approximation of the
plant dynamics but can never be exactly the same as the plant
model. Which is why we used the TRNSYS building as the
plant model in our MPC simulation to make it more realis-
tic. In [5], the authors discuss the development of a control-
oriented simplified modeling strategy for MPC in buildings
using virtual simulations. [19] presents a methodology to au-
tomate building model calibration and uncertainty quantifica-
tion using large scale parallel simulation runs. The method
considers global sensitivity analysis using probabilistic data
while we consider a fixed bias error.

7. DISCUSSION AND LIMITATIONS
(a) Scalability: Although the Model-IQ approach has been
presented for the case of a single zone, it can be easily ex-
tended for a multi-zone scenario in which zones interact with
each other. One method of dealing with this case is to treat
the neighboring zone as a boundary condition (temperature
node) for the zone of interest. We saw this in the example of
the input uncertainty analysis for Suite 210, in the case study
in Section 5, where the porch area was an adjacent zone and
its temperature was a boundary condition for our zone model.

(b) Measurement process: The accuracy of the model is af-
fected by the sampling rate and the quantity of data. It is nec-
essary that the model is re-tuned or re-trained as the operating
conditions of the building change or due to seasonal changes.
Problems of optimal experimentation design for building in-
verse models, minimum frequency of model re-tuning and
minimum duration of training period are of interest and will
be investigated as part of future work.

(c) Sensor placement: Using real data we have shown an
example of how sensor placement can result in a bias in its
measurement. However, we do not directly map the sensor



placement/density to the bias.
Model-IQ Toolbox: The Model-IQ methodology has been

implemented into an open-source toolbox. As shown in Fig. 1,
the toolbox takes the building inverse model, an estimation al-
gorithm and the training data set as input. The toolbox runs
user specified input-output uncertainty analysis and compares
the model accuracy sensitivity coefficients to identify the im-
portant input training data streams.

8. CONCLUSION
We introduced Model-IQ, a methodology and a toolbox for
analysis of uncertainty propagation for building inverse mod-
eling and controls. Given a plant model and real input data,
Model-IQ automatically evaluates the effect of the uncertainty
propagation from sensor data to model accuracy to controller
performance. Through analysis with a high fidelity virtual
building modeled in TRNSYS and a case study with real mea-
surements from an office building, we show:

(a) Uncertainty bias present in the training input adversely
effects the accuracy of the building inverse model. The
extent of the influence of uncertainty in each training data
stream on the model accuracy can be quantified through
an input uncertainty analysis.

(b) We evaluate the relationship between model accuracy and
performance of a MPC controller. Our empirical treat-
ment of this analytically hard problem is both new and
realistic compared to related work. We demonstrate that
an accurate building inverse model can result in a MPC
cost reduction of more than 13% while a bad model will
barely reduce the cost (3%).

(c) We run the Model-IQ toolbox on a data-set obtained form
a real building. We show that the density and placement
of sensors are responsible for introducing a location based
bias in the measured data. We observe that a bias of 1%
degrades the model accuracy by 20%.

Model-IQ is a first step towards an automated tool to deter-
mine the minimum number of sensors, with their appropri-
ate placement in the building, required to capture an adequate
building model for model-based control strategies.
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