December 2004

Optimum Scheduling and Memory Management in Input Queued Switches With Finite Buffer Space

Saswati Sarkar
University of Pennsylvania, swati@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/ese_papers

Recommended Citation

Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=29865&page=1

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/65
For more information, please contact repository@pobox.upenn.edu.
Optimum Scheduling and Memory Management in Input Queued Switches With Finite Buffer Space

Abstract
The goal of this paper is to design optimal scheduling and memory management so as to minimize packet loss in input queued switches with finite input buffers. The contribution is to obtain closed-form optimal strategies that minimize packet loss in 2 x 2 switches with equal arrival rates for all streams. For arbitrary arrival rates, the contribution is to identify certain characteristics of the optimal strategy, and use these characteristics to design a near-optimal heuristic. A lower bound for the cost associated with packet loss for \(N \times N \) switches is obtained. This lower bound is used to design a heuristic which attains near-minimum packet loss in \(N \times N \) switches with arbitrary \(N \). These policies reduce packet loss by about 25\% as compared to the optimal strategy for the infinite buffer case. The framework and the policies proposed here apply to buffer-constrained wireless networks as well.

Keywords
Finite buffer, input queued switch, Markov decision process (MDP), memory management, scheduling

Comments
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=29865&page=1

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Optimum Scheduling and Memory Management in Input Queued Switches With Finite Buffer Space

Saswati Sarkar, Member, IEEE

Abstract—The goal of this paper is to design optimal scheduling and memory management so as to minimize packet loss in input queued switches with finite input buffers. The contribution is to obtain closed-form optimal strategies that minimize packet loss in 2×2 switches with equal arrival rates for all streams. For arbitrary arrival rates, the contribution is to identify certain characteristics of the optimal strategy, and use these characteristics to design a near-optimal heuristic. A lower bound for the cost associated with packet loss for $N \times N$ switches is obtained. This lower bound is used to design a heuristic which attains near-minimum packet loss in $N \times N$ switches with arbitrary N. These policies reduce packet loss by about 25% as compared to the optimal strategy for the infinite buffer case. The framework and the policies proposed here can be applied to buffer-constrained wireless networks as well.

Index Terms—Finite buffer, input queued switch, Markov decision process (MDP), memory management, scheduling.

I. INTRODUCTION

We consider resource allocation in input queued switches with finite memory in the input adapters. The performance objective is to minimize packet loss due to memory overflow. To the best of our knowledge, this problem has not been addressed in input queued switches with memory constraints, even though its counterpart with the infinite buffer assumption has been the subject of extensive research. The finite memory constraint introduces significant additional complications, and as we discuss later, the optimum strategies are significantly different from the infinite buffer case. For example, if the buffers are assumed to be infinite then the challenge is to decide the packet scheduling so as to attain the desired performance objective. However, in the finite buffer case, additionally one needs to decide whether or not to accept an arriving packet and which packet to drop in case of a memory overflow. The decision has a significant impact on the packet loss rate. Besides, the packet scheduling must adapt to the memory constraints.

We first briefly review the existing literature in optimum scheduling in input queued switches. Karol et al. [1] showed that due to head of line blocking the throughput under first-in-first-out (FIFO) scheduling is limited to 58.5% of the switching capacity. Mckeown et al. [2] presented the maximum weighted matching based scheduling which attains the maximum possible throughput. We will refer to this policy as MM. Tassiulas et al. [3] presented a maximum difference in backlog-based scheduling which attains the maximum possible throughput in any network of constrained queues. The constraints there apply to input queued switches as well. However, all these generic results apply to the case where the queues have infinite buffer space, and consequently they have not addressed memory management at all. Next, we discuss how the resource management problem differs in input queued switches when input buffers are assumed to have finite memory.

When the input buffers have finite memory, the resource management problem has two components: a) packet scheduling and b) memory management. The first decides which packets can be scheduled without violating the switching constraints imposed by the input queued switch. Input queuing introduces several scheduling interdependencies, and allows only certain scheduling patterns. The scheduling should be such that an input or output port is used for the transfer of only one packet at a time. Different packets can be simultaneously transferred to the outputs as long as these do not share the same input or output port. Memory management determines the packet acceptance policy, namely, which incoming packet will be accepted, and which packet should be dropped in case of memory overflow (the choice is between incoming packets and existing packets). These decisions will depend on buffer occupancy and possibly arrival and service statistics. More importantly, the packet scheduling and memory management decisions must be taken in conjunction, and will depend on each other. For example, only one packet can be transferred to the output if all outstanding packets are waiting at the same input or are destined to the same output. Many more packets can however be transferred if the outstanding packets do not have common inputs and outputs. Refer to Fig. 1 for an illustration. Memory management can be utilized efficiently to ensure that fewer outstanding packets share input and output ports. To the best of our knowledge, neither problem has been addressed in the presence of memory constraints. Interestingly, we observed that the MM scheduling strategy [2] which maximizes throughput in input queued switches with infinite buffers is

Manuscript received April 24, 2003; revised April 30, 2004. This work was supported by the National Science Foundation under Grants ANI-0106984, NCR-0238340, and CNS-0435306.

The author is with the Departments of Electrical and Systems Engineering and Computer and Information Sciences, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: swati@ee.upenn.edu).

Communicated by G. Battail, Associate Editor At Large.

Digital Object Identifier 10.1109/TIT.2004.838375

2In graph theory, a matching is a collection of edges that do not share a node. In the switching context, a matching is a collection of input–output pairs i, j that do not have a common input or output. The weight of each input–output pair i, j is the number of packets that are waiting at i to be served to j. The weight of a matching is the sum of the weights of the input–output pairs in the matching. A maximum weighted matching schedules the matching of maximum weight.

0018-9448/04$20.00 © 2004 IEEE
strictly suboptimal in terms of throughput in the presence of memory constraints.

Memory management has been addressed for other types of switch architectures, e.g., shared memory switches [4]–[7]. However, scheduling is not an issue in these switches. This is because multiple packets can be simultaneously transferred to an output from different inputs. The outputs can simultaneously serve packets independent of each other. Memory is the only shared resource in these switches. Thus, the problem of deciding a jointly optimal scheduling and memory management strategy does not arise, and the memory management strategies need not be designed to cater to scheduling dependencies in these switches.

Similar scheduling and memory management problems arise in optical switches [8], and these are seriously constrained in memory. Also, mathematically, the scheduling and memory management problems in input queued switches are equivalent to those in finite memory nodes in wireless ad hoc networks [9]. Thus, scheduling policies which attain maximum throughput in wireless networks maximize the throughput in networks of input queued switches [2], [3]. The significance of this observation is that mathematically the problem we address in this paper forms the core of several applications of practical utility, and the solution of this problem is expected to apply to all these problems.

Our objective is to provide a theoretical basis for the problem of jointly optimum scheduling and memory management. Our investigation yields several apparently counter-intuitive results which we describe later. In Section II, we mathematically model the problem and show its close connection with the bandwidth and memory management problems in wireless ad hoc networks. In Section III, we present a Markov decision process (MDP) [10], [11] based framework for computing the optimum strategy. MDP based computations are time and memory intensive, and become intractable even for switches with moderate buffer sizes. However, using this framework, in Section IV-A, we present a closed-form computationally simple optimal scheduling and memory management strategy for input queued switches with two inputs and two outputs under the assumption of equal arrival rates for all input–output streams. The optimal scheduling transfers as many packets as possible at all times. The optimal memory management uses a packet acceptance policy that balances the number of outstanding packets for the different outputs. This in turn allows the scheduling to transfer several packets to the output and reduces the buffer occupancy and, therefore, the packet loss in the switch. In Section IV-B, we obtain several features of the optimal strategy in 2×2 switches for arbitrary arrival rates, and using these properties we design a heuristic strategy which we refer to as ”symmetric optimal policy” or SOP. Numerical computation shows that SOP performs close to the optimal. The numerical results will also demonstrate that the MM scheduling which is known to be optimal in absence of memory constraint [2] has 25% more packet loss than SOP in many cases. In Section V, we present a lower bound for the MDP cost function for the general case of switches with N inputs and N outputs, and suggest a heuristic strategy which minimizes this lower bound. This policy balances congestions (traffic load) at the terminals and is therefore referred to as BCT. We present numerical performance evaluation to demonstrate that the packet loss experienced by BCT is close to the minimum possible value. In addition, BCT performs substantially better than MM, and in many cases reduces the packet loss by 40% or more as compared to MM. In Section VI, we discuss implementation challenges and future research directions in context of specific applications such as input queued switches, wireless networks, and optical switches. The proofs of the technical results can be found in appendices.

II. NETWORK MODEL

We consider an input queued switch with N inputs and N outputs (Figs. 1 and 2). The size of the input buffers are B_1, \ldots, B_N. Incoming packets have predetermined outputs and the arrival processes are independent Poisson. The arrival rate of packets at input i for output j is λ_{ij}, $i = 1, \ldots, N$, $j = 1, \ldots, N$. Packets are stored in the respective input buffers until they are transferred to the intended outputs. Queue length
of packets waiting at input i for output j at time t is $x_{ij}(t)$. Clearly, $\sum_{j=1}^{N} x_{ij}(t) \leq B_i$. Packets have exponential duration with the service rate for the packets at the jth input and jth output being μ_{ij}. For simplicity, we will assume equal buffer sizes and equal service rates, i.e., $B_i = B$ for all i, and $\mu_{ij} = \mu$ for all i, j. We will also assume that all packets which start service at the same time end service at the same time as well. Thus, duration of a specific schedule is exponential with rate μ. Arrivals pre-empt the service, i.e., the switch chooses a new matching after an arrival. We relax many of these assumptions in simulation, e.g., we consider the effect of unequal packet sizes and heavy tailed arrival processes on the design (see Fig. 10).

Now, λ_{ij} is the expected number of packets arriving at the jth input for the jth output per unit time, and μ is the expected time units required to serve a packet. Now, $\lambda_{ij}, \forall i, j$ and μ can be scaled as desired by appropriately selecting the time unit. We select the time unit such that

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij} + \mu = 1;$$

this again simplifies the analysis. Note that Cidon et al. have also selected the time unit similarly ([5, Sec. III, p. 1231]).

An input–output pair can be involved in transfer of only one packet at a time, i.e., while input i is transferring a packet to output j, input i cannot transfer any other packet and output j cannot receive any other packet. The scheduling problem is to decide which packets are transferred from the input to the output at any time t. Clearly, the transfers must constitute a matching3 at any time t. There can be several possible matchings and the scheduling problem at any time is to choose the appropriate matching. Refer to Fig. 2 for examples of valid scheduling. Every time a packet transfer is completed from input i to output j the queue length x_{ij} decreases by one.

The memory management problem is to decide how the input buffers should be shared by packets intended for different outputs. When a new packet arrives at an input, one of the following actions can be taken: a) the packet is accepted, b) the packet is rejected, and c) the packet is accepted while some other packet waiting at the input is dropped. The last action is commonly referred to as “push-out” [4], [5], [7]. If a packet arrives when the input queue is full, then one of the last two actions must be taken. The memory management problem is to choose the appropriate course of action when a new packet arrives. Every time a new packet is accepted in input i for output j, the queue length x_{ij} increases by one. If a packet waiting at input i intended for output j is dropped, x_{ij} decreases by one.

The objective is to choose the scheduling and the memory management scheme so as to minimize the average packet loss. A packet loss happens every time an incoming packet is rejected or an existing packet is dropped. Throughput of the switch is the average number of packets transferred from the inputs to the outputs. Throughput maximization and loss minimization are equivalent objectives, as the sum of throughput and loss rates is equal to the sum of the arrival rates. Thus, a strategy that minimizes loss maximizes throughput and vice versa.

Now we argue how the finite memory assumption complicates the problem. First, the issue of memory management arises only because of the finite buffer assumption. Packet loss never happens and thus packets can always be accepted for infinite buffers. However, in the presence of finite buffers, which is the case in practice, packet loss happens whenever an incoming packet finds the buffer full, and thus packet acceptance and scheduling decisions need to be sophisticated so as to minimize this loss. Secondly, a scheduling which maximizes the throughput under the infinite buffer assumption will not maximize the throughput (and hence minimize the loss) in the finite buffer case in general. This can be explained as follows. A policy is said to maximize the throughput in the infinite buffer case if it “stabilizes” the system under the maximum possible load, i.e., the policy must “stabilize” the system for all arrival rates $(\lambda_{11}, \ldots, \lambda_{NN})$ such that

$$\sum_{i=1}^{N} \lambda_{ij} < \mu \quad \text{and} \quad \sum_{j=1}^{N} \lambda_{ij} < \mu, \quad \forall i,j$$

[2], [9]. A system is said to be stable as long as the queues become empty ($x_{ij}(t) = 0 \forall i,j$) infinitely often. Note that for stability it is not important how soon the queues empty, but it is sufficient that the system reaches the all-zero state infinitely often. However, in the finite buffer case, the average time taken to empty the queues affects the performance of the system. Consider a simple example to illustrate this fact. Consider a switch with two inputs and two outputs ($N = 2$). $\lambda_{11} = \lambda_{22} = 0.1, \lambda_{12} = \lambda_{21} = 0, \mu = 0.4$. Consider two different policies. The first is work conserving and serves the packets in FIFO order at the output terminals. The second serves the packets in FIFO order but takes a vacation after serving every packet. The duration of the vacation is an exponential random variable with average 2.5 units. Both these policies stabilize3 the system and attain the same throughput under infinite buffer assumption (throughput is 0.2 for both policies). However, the average duration of the busy period for the second is at least twice that for the first, and the packet loss is higher in the second for any finite buffer length. The bottom line is that the infinite buffer assumption offers the system significant latitude, while in the presence of memory constraints the scheduling strategies need to use resources more carefully. Thus, not all policies which optimize the performance under infinite buffer assumption will do so in the finite buffer case. In fact, as discussed before, we will demonstrate that the MM scheduling which maximizes system throughput under infinite buffer assumption [2] does not maximize throughput in the finite buffer case.

Finally, we point out the similarities between resource allocations in input queued switches and wireless ad hoc networks. Incidentally, future ad hoc networks are expected to consist of small, light-weight terminals which must perform the functions of end nodes as well as intermediate routers. Thus, these nodes will be constrained in both memory and bandwidth, and hence,

3Recall that a matching is a collection of input–output pairs i, j that do not have a common input or output.
efficient usage of both resources via scheduling and memory management is necessary for attaining the performance objectives. Consider an ad hoc network with nodes $1, \ldots, N$. Node i has buffer B_i. Every node has a locally unique frequency, but only one radio. Since a node has a single radio, it can be involved in at most one transmission at a time in the role of either a transmitter or a receiver. But, several transmissions can proceed simultaneously as long as every node is involved in at most one transmission. Like in input queued switches, at any time the successful transmissions must constitute a matching, and the scheduling problem is to decide the appropriate matching. Again, like in input queued switches, the memory management problem is to decide whether to accept an incoming packet at a node and also whether an existing packet should be pushed out by a new packet. We conclude that the scheduling and the memory management problems are similar in both cases. This further motivates the investigation of the scheduling and the memory management problem in either case, as the solution for one may be used in the other case as well. Wireless ad hoc networks will need a distributed scheduling and memory management policy. We focus on developing the optimal centralized policy; this is the first step toward developing an optimal distributed solution.

The optimal scheduling and memory management policy is the one that minimizes the average packet loss. We present a generic MDP [10], [11] based technique for computing the optimal loss rates and the optimal scheduling and memory management decisions in Section III. However, the computations become intensive with an increase in B or N. This happens because the computation needs several iterations and each iteration has a complexity $O(B^{2N})$. For example, for a 2×2 switch with $B = 50$, each iteration involves computations with 10^5 variables. Thus, the generic computation technique does not scale with the buffer size. However, we will use the general results obtained from this MDP framework to compute closed-form optimal strategies for the simple case of 2×2 switches where all arrival streams have equal arrival rates ($\lambda_{ij} = \lambda$ for all i, j). Subsequently, we will use the insight obtained from the optimal strategy for this specific case and certain properties deduced from the MDP framework to design near-optimal heuristics for the more general cases of 2×2 switches with arbitrary arrival rates and $N \times N$ switches with $N > 2$.

III. A GENERIC FRAMEWORK FOR COMPUTING THE OPTIMAL STRATEGY

We present an MDP based framework for computing the optimal strategy. Refer to [10], [11] for details on MDP. At any time t, the system is characterized by the system state vector

$$\mathcal{X}(t) = (x_{11}(t), \ldots, x_{ij}(t), \ldots, x_{NN}(t))$$

consisting of the queue lengths of the packets waiting at different inputs for transfer to outputs. Any state \mathcal{X} must satisfy

1. Several present-day networks have locally unique frequencies, e.g., Bluetooth networks.
2. In wireless ad hoc network a node may only be able to transmit packets to a subset of other nodes as the rest may be out of its transmission range. Similarly, in input queued switches, an input node may not transmit packets to all output nodes, e.g., λ_{ij} may equal zero for certain pairs i, j.
3. A computation is said to have $\Omega(n)$ complexity for input size n if it requires at least cn steps for some constant c and all large n.

the following restrictions: x_{ij} are nonnegative integers, and

$$\sum_{j=1}^{N} x_{ij} \leq B$$

since the buffer for input i can store a maximum of B packets. Thus, the system has a finite number of states. There is a transition to a new state whenever a packet transmission ends or a new packet arrives. The next state is determined by the system policy and the event (arrival or departure) which triggers the transition.

A packet is lost whenever the arriving packets fill the input buffer full (a packet may be lost even otherwise depending on the packet drop strategy). Since the objective is to minimize the packet loss, the system should avoid reaching the loss occurring states as much as possible. This can be attained by regulating the state transitions via the scheduling and memory management strategy. A strategy or a “policy” π is a rule which associates certain scheduling and memory management decisions with each state. The scheduling decision specifies which queues are scheduled for packet transfer at different states. We assume that at least one packet is served as long as the system is nonempty, i.e., the total number of packets is nonzero ("nonidling system"). The memory management decision specifies which incoming packets are accepted/rejected/pushed-out at different states. A policy is said to be Markovian if the decisions depend only on the current state and not on the previous states. A policy is said to be stationary if the decisions depend only on the system state and not on the time, i.e., the decisions are the same as long as the system states are the same irrespective of the decision times. A policy is said to be deterministic if the decisions are deterministic functions of the current state. In general, the decisions can be nonstationary, random, and can depend on history. However, stationary, deterministic Markovian policies are easy to implement, and fortunately there exists a stationary, deterministic Markovian policy that minimizes the packet loss [10].

We thus restrict ourselves to only these policies. Under such policies, the system evolves in accordance with a Markov process when the arrival is Poisson and the service exponential. The scheduling and memory management rule for a stationary, deterministic Markovian policy π is a function of the system state and is denoted $\mathcal{P}(\mathcal{X})$. Different policies assign different decisions to the states, and these different decisions lead to different state transitions and hence different packet loss rates. Since $\mu > 0$, and the system has a finite number of states, it follows from the nonidling assumption that the all-zero state $\mathcal{0}((0, \ldots, 0))$ is accessible from any other state \mathcal{X} irrespective of the policy.

We now formally describe the state transitions under a given policy π. Let $S(\mathcal{X})$ be the set of possible next states when the current state is \mathcal{X} and the next event is completion of packet transmission. Let $\mathcal{M} = \{M_1, M_2, \ldots, M_{|P|}\}$ be the collection of all scheduling, where an element M is described as follows:

$$M = (m_{11}, \ldots, m_{ij}, \ldots, m_{NN})$$

where $m_{ij} = 1$ if the queue ij is scheduled under M and $m_{ij} = 0$ otherwise. Each of the elements M represents a matching and \mathcal{M} is actually a collection of all possible matchings. Now,

$$S(\mathcal{X}) = \{\mathcal{Y}; \mathcal{Y} = \mathcal{X} - M, M \in \mathcal{M}, y_{ij} \geq 0 \forall i, j\}.$$

A policy π chooses the appropriate matching and this decides the next state in this set. We denote $s_{\pi}(\mathcal{X})$ as the next state when the current state is \mathcal{X}, the next event is completion of packet
transmission, and the policy is π. The state transition occurs at the rate μ.

Let $A(i,j,k)$ be the set of possible next states when the current state is \tilde{x} and the next event is arrival of a packet at the ith input for the jth output. The state transition happens at the rate λ_{ij}. The new packet can be accepted, rejected, or accepted while dropping some other packet at the same input. Thus, $g \in A(i,j,k)$ if a) $g \not= \tilde{x}$, or b) $y_{ij} = x_{ij} + 1$, $y_{lm} = x_{lm}$, for $(l,m) \not= (i,j)$, or c) $y_{kj} = x_{kj} + 1$, $y_{ik} = x_{ik} - 1$ for some $k \not= j$ such that $x_{ik} > 0$, $y_{lm} = x_{lm}$ $(l,m) \not= (i,j)$, (i,k). If the input buffer i is full (i.e., $\sum_{k=1}^{N} x_{ik} = B$), case b) is ruled out as a new packet can be accepted only by pushing out an old packet from input i. A policy π chooses the appropriate packet acceptance/rejection/push-out decision and thereby decides the next state in this set. We denote $a_{\pi}(\tilde{x},i,j)$ as the next state when the current state is \tilde{x}, the next event is arrival of a packet at the jth input for the jth output, and the policy is π.

Here, we assume that a packet can be pushed out only from an input that has a new arrival. However, more generally, packets can be pushed out from other inputs as well, and more than one packet can be pushed out. We show later that the performance objective of minimizing packet loss rules out these unnecessary packet rejections. Thus, we do not consider these options now.

Now we discuss how to compute the average packet loss of any policy. The packet loss in any state for a given arrival is the total number of packets dropped including the incoming packet. This quantity is one more than the difference between the total number of packets waiting in the switch before and after the packet arrives. The packet loss experienced when the current state is \tilde{x}, and the next state is \tilde{y} is denoted by the function $c(\tilde{x},\tilde{y})$, where

$$c(\tilde{x},\tilde{y}) = 1 + \sum_{i=1}^{N} \sum_{j=1}^{N} (x_{ij} - y_{ij}).$$

(1)

The packet loss depends on the policy and the arrivals since these together determine the next state. When the ith input has an arrival for output j and the policy is π, the loss function $c(\tilde{x},\tilde{y})$ is given by $c(\tilde{x}, a_{\pi}(\tilde{x},i,j))$, and will be denoted as $c_{\pi}(\tilde{x},i,j)$. Since we assume that not more than one packet is dropped including the incoming packet, the packet loss $c_{\pi}(\tilde{x},i,j)$ is upper-bounded by 1 for any policy π, i, j, and state \tilde{x}. The average packet loss under policy π when the system is in state \tilde{x} is $g_{\pi}(\tilde{x})$, where

$$g_{\pi}(\tilde{x}) = E_{i,j} c_{\pi}(\tilde{x},i,j) = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij} c_{\pi}(\tilde{x},i,j).$$

(2)

Since $c_{\pi}(\tilde{x},i,j) \leq 1$, this quantity is upper-bounded by $\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij}$ for all \tilde{x}. We introduce notions of discount β and “discounted loss rate” functions $J_{\beta,\pi}(\tilde{x})$ associated with every state \tilde{x} under a policy π. Let $\tilde{x}_{0}, \tilde{x}_{1}, \tilde{x}_{2}, \ldots$ be the consecutive states of the system.

$$J_{\beta,\pi}(\tilde{x}) = E_{\tilde{x}_{1},\tilde{x}_{2},\ldots} \left[g_{\pi}(\tilde{x}_{0}) + \beta g_{\pi}(\tilde{x}_{1}) \right. + \beta^{2} g_{\pi}(\tilde{x}_{2}) + \cdots | \tilde{x}_{0} = \tilde{x} \right], \quad \beta < 1.$$

We explain these notions intuitively here. The “discounted loss rate” function $J_{\beta,\pi}(\tilde{x})$ is a measure of the average loss experienced by the system if it starts from state \tilde{x} and follows the policy π. It is a weighted sum of the average loss in the current and future states, where the average loss experienced in the kth future state is weighed by β^{k}, the kth power of the discount β.

Intuitively, this measure of loss associates progressively lower importance with future packet loss.

Since the system has a finite number of states and the loss rates $g_{\pi}(\tilde{x})$ are upper-bounded, the packet loss probability of policy π is $\lim_{\beta \to 1} (1 - \beta) J_{\beta,\pi}(\tilde{0})$, where $\tilde{0}$ is the all-zero state [11]. Thus, the significance of the discounted loss rate is that its limiting case gives the loss probability. The discounted costs $J_{\beta,\pi}(\tilde{x})$ for all states \tilde{x} form the unique solution of the following system of N linear equations with N variables [10]:

$$J_{\beta,\pi}(\tilde{x}) = g_{\pi}(\tilde{x}) + \beta \mu J_{\beta,\pi}(a_{\pi}(\tilde{x},i,j)).$$

(3)

The intuition behind this relation is that under policy π the discounted loss rate associated with the current state \tilde{x} is the sum of the average loss rate in state \tilde{x}, $g_{\pi}(\tilde{x})$, and the average discounted loss rates of the next states. Thus, the discounted loss rate experienced by the system depends on the arrival and the service rates as also on the policy which determines the next state.

The optimal policy is the one that minimizes the packet loss probability. Let Π be the set of all policies. Consider a policy π^{OPT} that minimizes the discounted loss rate $J_{\beta,\pi^{OPT}}(\tilde{x})$ for all states \tilde{x} in the set Π. Let the minimum value of the discounted loss rate of state \tilde{x} be denoted as $J_{\beta,OPT}(\tilde{x})$. Then $J_{\beta,OPT}(\tilde{x})$ is the unique solution of the following equations [10]:

$$J_{\beta,OPT}(\tilde{x}) = T J_{\beta,OPT}(\tilde{x}).$$

(4)

where T is a linear operator on any function $f(\tilde{x})$ defined as follows:

$$T f(\tilde{x}) = \min_{\pi \in \Pi} \left(g_{\pi}(\tilde{x}) + \beta \mu f(a_{\pi}(\tilde{x},i,j)) \right).$$

(5)

Thus,

$$T J_{\beta,OPT}(\tilde{x}) = \min_{\pi \in \Pi} \left(g_{\pi}(\tilde{x}) + \beta \mu J_{\beta,OPT}(a_{\pi}(\tilde{x},i,j)) \right).$$

(6)

Intuitively, these equations follow from the observation that at every step the policy that minimizes the discounted loss rate chooses the next state which has the minimum discounted loss rate.

Since the system has a finite number of states, and the average loss associated with each state is upper- and lower-bounded for each policy π ($0 \leq g_{\pi}(\tilde{x}) \leq NH + 1$) and the all-zero state $\tilde{0}$ is accessible from any other state \tilde{x} regardless of which stationary policy is used, the following results hold [(11, Ch. V)]. The minimum packet loss probability is given by $\lim_{\beta \to 1} (1 -
\(\beta)J_{\beta,\text{OPT}}(\emptyset)\), where \(\emptyset\) is the all-zero state. Using (2), (5) can be simplified as follows:

\[
Tf(\bar{x}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \min_{\bar{y} \in \mathcal{A}(\bar{x},i,j)} \lambda_{ij}(c(\bar{x}, \bar{y}) + \beta f(\bar{y})) + \beta \mu \min_{\bar{y} \in \mathcal{S}(\bar{x})} f(\bar{y}).
\]

(7)

Also,

\[
s_{\beta,\text{OPT}}(\bar{x}) = \arg \min_{\bar{y}} J_{\beta,\text{OPT}}(\bar{y})
\]

and

\[
a_{\beta,\text{OPT}}(\bar{x},i,j) = \arg \min_{\bar{y}} \lambda_{ij}(c(\bar{x}, \bar{y}) + \beta J_{\beta,\text{OPT}}(\bar{y})).
\]

(9)

Equations (8) and (9) specify the scheduling and packet acceptance decisions for a particular \(\beta\). The strategy that minimizes the average packet loss is a limiting case \((\beta \to 1)\) of (8) and (9) ([11, Ch. V]). The optimal policy \(\pi_{\text{OPT}}\) is given by

\[
s_{\pi_{\text{OPT}}}(\bar{x}) = \lim_{\beta \to -1} s_{\beta,\text{OPT}}(\bar{x}),
\]

\[
a_{\pi_{\text{OPT}}}(\bar{x},i,j) = \lim_{\beta \to -1} a_{\beta,\text{OPT}}(\bar{x},i,j)
\]

(10)

for a certain infinite sequence \(\beta_1, \beta_2, \ldots\) such that \(\beta_i < 1\) for all \(i\) and \(\lim_{n \to -\infty} \beta_n = 1\).

Now we present value iteration based standard techniques for computing the solutions to the linear equation (4) [10] which will yield the optimal discounted loss rates associated with the states and thereafter the optimal strategy via (8) to (11). The sequence of iterations

\[
J_{\beta,k+1}(\bar{x}) = T J_{\beta,k}(\bar{x}), \quad k = 0,1,2,\ldots
\]

(12)

converges to the discounted loss rates \(J_{\beta,\text{OPT}}(\bar{x})\) for all states \(\bar{x}\) irrespective of the initial choice of the \(J_{\beta,0}(\bar{x})\) function. Thus,

\[
\lim_{k \to \infty} J_{\beta,k}(\bar{x}) = J_{\beta,\text{OPT}}(\bar{x})
\]

for all \(\bar{x}\) [10].

The optimal loss rates and the optimal scheduling and memory management decisions can be computed using these iterations. However, the iterations become computationally intensive with an increase in the length of the input buffers and the number of terminals \(N\). An \(N \times N\) switch with buffer sizes \(B\) has \(\Omega(BN^2)\) states. Thus, each iteration (12) has a complexity \(\Omega(BN^2)\). In addition, a large number of iterations may be necessary for convergence. Summarizing, this computation technique does not scale with buffer size and \(N\). However, we use these iterations to deduce several properties of the optimal strategy in Appendices C and D.

IV. OPTIMAL STRATEGY FOR 2 \times 2 SWITCHES

In this section, we will consider the scheduling and memory management strategies for input queued switches with two inputs and two outputs \((N = 2)\). We will first present the intuition behind the optimal resource allocation problem in this case. In Section IV-A, we will present the closed-form optimal strategy for symmetric traffic. In Section IV-B, we will obtain certain key properties of the optimal strategy for asymmetric traffic, and then we will design a heuristic using these properties. In Section IV-C, using numerical computations, we will demonstrate that this heuristic attains near-optimal packet loss.

We first describe the optimal resource allocation problem in this case. Refer to Fig. 1 for an illustration. There are four different queues of packets, \(x_{11}, x_{12}, x_{21}, \) and \(x_{22}\). The queue \(x_{ij}\) stores packets at input \(i\) waiting for output \(j\). The first two queues share the memory in input buffer 1 and the last two queues share the memory in input buffer 2. The arrival process is Poisson for each of these queues with rates \(\lambda_{11}, \lambda_{12}, \lambda_{21},\) and \(\lambda_{22}\), respectively and the service process is exponential at rate \(\mu\). Each buffer can store a maximum of \(B\) packets.

The pairs \([x_{11}, x_{22}]\) and \([x_{12}, x_{21}]\) can transmit packets simultaneously as the queues in these pairs do not share an input or output port. The switch can also schedule a single queue at a time. No other combination is allowed. Packet loss can be minimized if the buffer occupancy is reduced. Intuitively, this happens if a pair of queues is scheduled together rather than one at a time, because the former removes two packets from the buffer while the latter removes only one packet from the buffer. However, if the buffer occupancy is such that one queue is empty in each pair then the switch will be forced to schedule singletons. For example, if \(x_{11} = x_{22} = 0\), then the switch can schedule either \(x_{12}\) or \(x_{21}\) (Fig. 1(b)). For further illustration, consider the buffer occupancies in Fig. 1(a) \((\bar{x} = (2,2,2,2))\) and Fig. 1(b) \((\bar{x} = (0,4,0,4))\). Both configurations have the same queue lengths at the two inputs (four packets) and also the total number of packets waiting for transmission is the same for both (eight packets). The switch can transmit only one packet in Fig. 1(b) (from \(x_{12}\) or \(x_{21}\)) as all packets are intended for the same output (output 2). However, the switch can transmit two packets in Fig. 1(a) (can schedule either the pair \(x_{11}, x_{22}\) or the pair \(x_{12}, x_{21}\) as all the queues are nonempty).

Thus, a larger number of packets can be transmitted and hence packet loss can be reduced when the load is balanced across the queues. However, load should be balanced across “appropriate” queues. For example, consider the buffer occupancies in Fig. 1(b) \((\bar{x} = (0,4,0,4))\) and Fig. 1(c) \((\bar{x} = (4,0,0,4))\). Only two queues have packets in both cases and the queue lengths at the two inputs (four packets) and the total number of packets waiting for transmission (eight packets) are the same in both. However, the switch can transfer only one packet in Fig. 1(b) as discussed before, whereas two packets can be transferred in Fig. 1(c) (from queues \(x_{11}\) and \(x_{22}\)) since there are packets waiting at different inputs intended for different outputs. The configuration in Fig. 1(c) allows a transfer of a larger number of packets because it balances the load between appropriate queues. This can be quantified by considering the difference between the queue lengths of the queues which can be scheduled together, i.e., \([x_{11} - x_{22}]\) and \([x_{12} - x_{21}]\). These differences are 0, 0 for Fig. 1(a) and (c), and 4 for Fig. 1(b). In general, a larger number of packets can be transferred if these differences are smaller.

Appropriate push-out policy can be used to reduce these differences. When a new packet arrives and the input buffer is full, then the packet can be rejected or accepted by pushing
out an existing packet. The appropriate decision can be taken with the goal of reducing this difference. Assume that \(B = 4 \) in Fig. 1. Let a packet arrive at input 1 for output 1. In Fig. 1(b), the differences between the queue lengths of the queues in the pairs remain 4, 4 if the new packet is rejected, while the differences become 3, 3 if the new packet is accepted while pushing out an existing packet waiting at input 1 for output 2 (in the \(x_{12} \) queue). After this replacement, both queues \(x_{11} \) and \(x_{22} \) can be scheduled transferring two packets simultaneously. In Fig. 1(a), the new packet should be rejected as its acceptance using push-out will adversely affect the balance and increase the differences (packet rejection leaves the differences at 0, 0 and push-out increases the differences to 1, 1). Summarizing, a pair of queues should be scheduled whenever possible, and packet acceptance/rejection/push-out should be used judiciously to balance the load across the appropriate queues which facilitates a simultaneous transfer of two packets whenever possible. These observations are the key behind designing optimal strategies for symmetric traffic and near-optimal heuristics for asymmetric traffic.

A. Optimal Strategy for Symmetric Traffic

In this subsection, we will consider the symmetric traffic case. We assume that all arrival rates are equal, i.e., \(\lambda_{ij} = \lambda \) for all \(i, j \). We present the scheduling and memory management strategies which minimize the average packet loss in this case. We will refer to the optimal policy as "symmetric optimal policy (SOP)."

SOP Scheduling: The scheduling strategy needs to decide which queues to serve whenever the current packets finish transmission. The optimal scheduling is to serve the queues of either pair whenever possible. Let the current state be \(x' \) (let \(x' \neq 0 \)). If all the queues are nonempty (\(x_{ij} > 0 \) for all \(i, j \)), schedule either the \([1 - 1, 2 - 2]\) pair \((x_{11}, x_{22})\), or the \([1 - 2, 2 - 1]\) pair \((x_{12}, x_{21})\). The choice between the pairs can be arbitrary and does not affect packet loss. Now consider the case when some queues are empty. If \(\min(x_{11}, x_{22}) > \min(x_{12}, x_{21}) = 0 \), schedule the \([1 - 1, 2 - 2]\) pair. If \(\min(x_{12}, x_{21}) > \min(x_{11}, x_{22}) = 0 \), schedule the \([1 - 2, 2 - 1]\) pair. If \(\min(x_{12}, x_{21}) = \min(x_{11}, x_{22}) = 0 \), only one queue can be scheduled, and the longest queue is selected. The choice is arbitrary if the nonempty queues have equal lengths. If all the queues are empty (\(x' = 0 \)), no queue is scheduled for service.

SOP Memory Management: The memory management strategy decides whether to accept an incoming packet, and if the decision is to accept the packet then whether to push out an existing packet. The optimal decision is to accept an incoming packet without any push-out as long as the input buffer has space. If the input buffer is full when a new packet arrives, then the packet is either rejected or accepted while dropping an existing packet from a different queue in the same input buffer. The choice between the two is made with the objective of reducing the difference between the queue lengths of the queues which can be scheduled together. We introduce some notations for describing this part of the memory management more formally: \(D_1(x') = x_{11} - x_{22}, D_2(x') = x_{12} - x_{21} \). Let a packet arrive at input buffer 1 for output 1 (in queue \(1 - 1 \)) and let input buffer 1 be full \((x_{11} + x_{12} = B)\). Then the new packet is rejected if \(D_1(x') > D_2(x') + 1 \), accepted and a packet of queue 1 → 2 is dropped otherwise. Let \(x_{11} + x_{12} = B \), and a new packet arrives at queue 1 → 2. Then the new packet is rejected if \(D_2(x') > D_1(x') + 1 \), accepted and a packet of queue 1 → 1 is dropped otherwise. Let \(x_{21} + x_{22} = B \), and a new packet arrives at queue 2 → 1. Then the new packet is rejected if \(D_2(x') < D_1(x') + 1 \), accepted and a packet of queue 2 → 1 is dropped otherwise. An illustrative example follows.

Example IV.1: We illustrate SOP using the configurations in Fig. 1. Let \(B = 4 \). In Fig. 1(a) \((\mathcal{E} = (2, 2, 2, 2))\), SOP schedules either the pair \([1 - 1, 2 - 2]\) or the pair \([1 - 2, 2 - 1]\) choosing between them arbitrarily. Any incoming packet is rejected. In Fig. 1(b) \((\mathcal{E} = (0, 4, 0, 4))\), only one queue can be scheduled. SOP schedules either \(1 - 2\) or \(2 - 2\) choosing between them arbitrarily since both have the same length (four packets). At either input, an incoming packet for output 1 is accepted by pushing out a packet waiting for output 2 at the same input, and an incoming packet for output 2 is rejected. In Fig. 1(c) \((\mathcal{E} = (4, 0, 0, 4))\), SOP schedules the pair \(1 - 1, 2 - 2\). Any incoming packet is rejected. Now let \(B = 5 \). The scheduling remains the same as before in each case. The memory management decision is to accept any incoming packet in all three cases.

The following theorem outlines the optimality of SOP.

Theorem 1: SOP minimizes the average packet loss in \(2 \times 2\) switches with equal arrival rates for all streams (\(\lambda_{ij} = \lambda \) for all \(i, j \)).

We prove Theorem 1 in Appendix A.

B. Resource Allocation for Asymmetric Traffic

In this subsection, we will consider the general case with unequal arrival rates for different arrival streams, i.e., we no longer assume that \(\lambda_{ij} = \lambda \). First, we identify certain properties of the optimal scheduling and memory management strategy, and subsequently present a heuristic using these properties.

Theorem 2: For any \(2 \times 2\) input queued switch, the optimal scheduling schedules a pair of queues whenever possible, and the optimal memory management decision is to accept an incoming packet without any push-out as long as the input buffer has space.

We prove Theorem 2 in Appendix B.

These properties specify the strategy in certain cases. For instance, in Fig. 1(c), the optimal scheduling is to serve the pair \(1 - 1, 2 - 2\). Also, if \(B = 5 \) then the optimal memory management strategy accepts all incoming packets for all three configurations in Fig. 1. However, these properties do not completely specify the optimal strategy. For example, it is not known how to choose between pairs of queues when either pair can be scheduled (e.g., Fig. 1(a)), or how to choose a queue when the system state is such that only one queue can be scheduled, i.e., when \(\min(x_{12}, x_{21}) = \min(x_{11}, x_{22}) = 0 \) (e.g., Fig. 1(b)). The packet acceptance/rejection/push-out decision when the input
buffer is full is also not known in the asymmetric case (e.g., all three cases in Fig. 1 with $B = 4$).

We propose SOP (Section IV-A) as a heuristic here. We justify the choice as follows. SOP satisfies the properties obtained for the optimal strategy in this general case. Besides, the scheduling and the memory management decisions of SOP strive to balance the traffic across different queues which allow the scheduling to transfer a larger number of packets and thus reduce the buffer occupancy and the packet loss. Numerical computations presented in Section IV-C will demonstrate that SOP attains near-minimum packet loss.

We have obtained some other properties of the optimal strategy under the additional assumption that $\lambda_{i1} = \lambda_{i2}$, $i = 1, 2$. We still allow $\lambda_{ij} \neq \lambda_{ik}$ for any j, k, i.e., unequal arrival rates at different inputs.

Theorem 3: If $\lambda_{i1} = \lambda_{i2}$, $i = 1, 2$, then the optimal strategy has the same memory management policy as SOP. The optimal scheduling is the same as the SOP scheduling except for the case when $x_{12} = x_{22} = 0$ or $x_{11} = x_{21} = 0$.

We prove Theorem 3 in Appendix B. Thus, the additional assumption of $\lambda_{i1} = \lambda_{i2}$, $i = 1, 2$, fully specifies the optimal memory management scheme. The scheduling policy is also specified except that it is not known how to choose between queues when both the queues intended for one output terminal are empty, i.e., when $x_{12} = x_{22} = 0$ or $x_{11} = x_{21} = 0$ (e.g., Fig. 1(b)).

C. Performance Evaluation Using Numeric Computation

We compare the performances of SOP, the optimal policy, and MM. We describe the MM policy below. First we compare the average packet losses of SOP and the optimal strategy, under unequal arrival rates. We compute the average packet losses using the MDP based techniques described in Section III. We have observed that SOP attains near-minimum average packet loss. We present numerical results for two different traffic patterns.

When all arrival rates are equal, there is no difference between the arrival rates of queues in the pairs which can be scheduled together, and as discussed before, these differences are important metrics. Thus, in nonuniform traffic model, we study the cases when the differences between arrival rates of queues in these pairs are nonzero. First, we consider the case where the arrival rates are unequal for one pair, and equal for the queues in the other pair. Specifically, $\lambda_{11} = 7\lambda_{22}$, $\lambda_{12} = \lambda_{21}$, and $\lambda_{11} = 3,5\lambda_{12}$. We denote this pattern as “NU1.” We compare the performances of SOP with the optimal for different values of the departure rates (μ) (Fig. 3), and for each μ we choose the arrival rates such that the above ratios are satisfied and $\mu + \sum_{i=1}^{2} \sum_{j=1}^{2} \lambda_{ij} = 1$ ($\lambda_{22} = \frac{1-\mu}{12}$ ensure this). Fig. 3 shows that the performances of the two are almost identical in most cases with the difference between the loss probabilities less than 2% for all μ (the curves cannot be distinguished). We consider the case where the arrival rates are unequal for both pairs, while the total arrival rates are equal for both inputs, i.e., $\lambda_{11} + \lambda_{12} = \lambda_{21} + \lambda_{22}$ (this did not hold in the previous case). Here, $\lambda_{11} = 4\lambda_{22}$, $\lambda_{12} = 4\lambda_{12}$, and $\lambda_{11} = \lambda_{21}$. We denote this pattern as “NU2.” Again, we vary μ and for each μ we choose the arrival rates such that the above ratios are satisfied and $\mu + \sum_{i=1}^{2} \sum_{j=1}^{2} \lambda_{ij} = 1$ ($\lambda_{22} = \frac{1-\mu}{10}$ ensure this).

Fig. 4 shows that the performance of SOP is near optimal all through—again, the curves cannot be distinguished. The trends remain similar for other patterns of arrival rates which we do not exhibit on account of space constraints.

We believe that the minor difference in the packet losses of SOP and the optimal strategy is principally due to the suboptimality of the packet acceptance/rejection/push-out decision of SOP in the general case. Consider traffic pattern NU1 as an example. Let 2 be the current state. Since the $1 \rightarrow 1$ stream has significantly higher arrival rate as compared to other streams, the optimal strategy should push out the packets of the $1 \rightarrow 2$ stream less frequently than that of the $1 \rightarrow 1$ stream when input
is rarely reached since the stream has significantly higher arrival rate as compared to other streams. Thus, there is only slight suboptimality. The relative performance of MM with respect to SOP is much worse for nonuniform traffic (Figs. 3 and 4) than for uniform traffic (Fig. 5). This happens as the queues tend to be heavily unbalanced when arrival rates are unequal, while the discrepancy is less for equal arrival rates. This load mismatch worsens the performance for MM. Thus, MM and SOP perform similarly in these two extremes, while SOP substantially outperforms MM in the middle. We observed similar trends for other unequal arrival rate patterns as well. When arrival rates are equal, MM is consistently inferior to SOP for all departure rates (Fig. 5). However, the difference in performance is small in this case, and thus, the curves look identical in the figure.

Now we consider the MM policy which schedules packets as per a maximum weighted matching. This policy has been proposed for the infinite buffer case and attains the maximum possible throughput there [2]. Memory management is not an issue under infinite buffer assumption, and as such MM does not address it. We consider the obvious extension, whereby MM always accepts a packet whenever there is space in the buffer and always rejects a packet if the input buffer is full. Push-out is not used. MM’s average packet loss can be computed using MDP based techniques (Section III). Numerical computation shows that MM has considerably higher packet loss than SOP for unequal arrival rates. For traffic patterns NU1 and NU2 (Figs. 3 and 4, respectively), SOP decreases the packet loss by more than 25% in certain cases. Note that the difference brought about by intelligent resource allocation is pronounced for medium departure rates. For large departure rates, all policies attain low packet loss and for small departure rates all policies suffer from heavy packet loss. Thus, MM and SOP perform similarly in these two extremes, while SOP substantially outperforms MM in the middle. We observed similar trends for other unequal arrival rate patterns as well. When arrival rates are equal, MM is consistently inferior to SOP for all departure rates (Fig. 5). However, the difference in performance is small in this case, and thus, the curves look identical in the figure.

The relative performance of MM with respect to SOP is much worse for nonuniform traffic (Figs. 3 and 4) than for uniform traffic (Fig. 5). This happens as the queues tend to be heavily unbalanced when arrival rates are unequal, while the discrepancy is less for equal arrival rates. This load mismatch worsens the performance for MM. Thus, MM experiences much heavier packet loss for nonuniform traffic than for uniform traffic. The memory management in SOP restores a balance in the queue lengths by replacing packets of more heavily loaded queues with those of the lightly loaded queues whenever possible, and this retains the performance for nonuniform traffic at the same level as for the uniform traffic case. As an example, at service rate 0.2, the sum of the arrival rates is 0.8 ($\sum_{i=1}^{2} \sum_{j=1}^{2} \lambda_{ij} = 0.8$), MM has 39.1% and 51.5% packet loss for equal arrival rates
and the arrival pattern NU1, respectively, while the numbers are 38.95% and 39.87% for SOP. This indicates that SOP is robust to different traffic patterns (note that neither SOP nor MM uses statistics information in the decision process).

Finally, we discuss the implications of the suboptimality of MM. The main reason for suboptimality of MM is that it does not use any intelligent memory management scheme which is important for performance optimization when buffers are finite. The optimal scheduling is to schedule a matching of maximum size or a “maximum matching” for both symmetric and asymmetric traffic, which is different from the maximum weighted matching MM uses. We explain MM scheduling to illustrate this. The matchings for a 2×2 switch are the single queues $[1 \rightarrow 1], [1 \rightarrow 2], [2 \rightarrow 1], [2 \rightarrow 2]$, and the pairs $[1 \rightarrow 1, 2 \rightarrow 2]$, $[1 \rightarrow 2, 2 \rightarrow 1]$. The weight of a matching is the sum of the queue lengths of the queues in the matching. MM schedules the queues which constitute the matching with the maximum weight. Let the current state be \mathcal{F}. Suppose $x_{22} = 0$, $x_{11} > x_{12} + x_{21}$ and $x_{12} > 0$, $x_{21} > 0$ (e.g., $\mathcal{F} = (5, 2, 2, 0)$). MM schedules only the queue $1 \rightarrow 1$, while the optimum scheduling schedules the pair $1 \rightarrow 2, 2 \rightarrow 1$. Thus, the optimum scheduling transfers a larger number of packets than MM. This reduces the buffer occupancy and hence the packet loss for the optimal strategy. MM attains optimum throughput in the infinite buffer case in spite of transferring fewer number of packets because the infinite buffer assumption offers more latitude than the finite buffer case as discussed before. Interestingly, an example provided by Mckeown et al. shows that for infinite buffers maximum matching scheduling attains less throughput than maximum weighted matching scheduling which attains maximum throughput [2]. Apparently, it is somewhat counterintuitive that the result will be opposite in the finite buffer case, particularly since infinite buffer assumption is the limiting case of finite buffers. This apparent contradiction can be explained by two observations. a) The example was provided for 3×3 switches while the optimal scheduling properties presented so far are for 2×2 switches. b) The example showed that the choice of a specific maximum matching is suboptimal for unequal arrival rates and does not show that every maximum matching based scheduling is suboptimal. There can be several maximum matchings. The analytical results obtained here show that the optimal scheduling is to choose “some” maximum matching or rather to choose a pair of queues whenever possible. The choice between the pairs can be arbitrary for symmetric traffic, but the choice may matter for asymmetric traffic.

We compared the performance of SOP with some other scheduling strategies, e.g., choosing the maximum weighted matching of maximum size, etc. The performance differences are similar to that with MM, which indicates that the performance advantage of SOP is primarily due to the load balancing attained by the memory management. Refer to [12] for performance comparisons for heavy tailed and bursty arrival processes.

V. RESOURCE ALLOCATION FOR $N \times N$ SWITCHES FOR ARBITRARY N

We consider the scheduling and memory management problems in switches with N inputs and N outputs for arbitrary N. The objective is to minimize the packet loss. The optimal strategy can be computed using MDP (Section III). However, no closed-form solution is known for this case. Since computations using MDP are complex, we propose a computationally simple heuristic in this case and show using numerical computation that this heuristic attains low packet loss. This heuristic has been motivated by a lower bound on the MDP cost function presented in Lemma 1.

The objective of the scheduling policy is to transfer as many packets as possible so as to minimize the packet loss, and memory management decides which packets to accept, reject, and push-out so as to allow the transfer of several packets in every scheduling. Consider the example shown in Fig. 2. All three packets can be transferred at the same time since they are waiting at different inputs and intended for different outputs. However, if all three were waiting at the same input, only one could be transferred. Thus, similar to the special case for 2×2 switches, we need to balance the load across appropriate queues. The SOP memory management attains this in 2×2 switches by accepting/rejecting/pushing-out packets so as to reduce the difference between queue lengths of the queues which can be scheduled together ([1 \rightarrow 1, 2 \rightarrow 2] and [1 \rightarrow 2, 2 \rightarrow 1]). For $N > 2$, more than two queues can be scheduled together, e.g., $1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3$ can be scheduled together in the 3×3 switch showed in Fig. 2. Thus, the notion of reducing these differences cannot be extended directly for $N > 2$.

We consider a new measure of congestion, the maximum of the total number of packets waiting at an input and waiting for an output. We denote this measure as $\text{cons}(\mathcal{F})$, where

$$\text{cons}(\mathcal{F}) = \max \left(\max_{i=1}^{N} \sum_{j=1}^{N} x_{ij}, \max_{j=1}^{N} \sum_{i=1}^{N} x_{ij} \right)$$

and \mathcal{F} is the current state. Note that $\text{cons}(\mathcal{F}) = 1$ in Fig. 2, $\text{cons}(\mathcal{F}) = 3$ if all three packets were waiting at the same input, or waiting for the same output in Fig. 2. Three packets can be transferred to the outputs simultaneously in the first case, while only one packet can be transferred in the latter cases. Thus, intuitively a larger number of packets can be transferred when $\text{cons}(\mathcal{F})$ is smaller. We propose a strategy which minimizes this congestion measure. First, we justify why $\text{cons}(\mathcal{F})$ is a measure of goodness for a state \mathcal{F}.

1) If the current state is \mathcal{F}, every packet has duration T units and there is no future arrival, then the minimum time taken to transfer all waiting packets is $T \text{cons}(\mathcal{F})$ [13], [14].

2) We have shown in Section III that the optimal policy minimizes a parametrized function $J_{\text{AOPT}}(\mathcal{F})$ referred to as the “discounted loss rate function” for each state \mathcal{F} and all values of the parameter β that are sufficiently close to 1. We show here that under heavy traffic this function is lower-bounded by $\text{cons}(\mathcal{F})$ for each state \mathcal{F} and each β that is sufficiently close to 1.

Lemma 1: For all

$$\beta \in \left[\frac{N \cdot B}{N \cdot B + \min \left(\sum_{j=1}^{N} \lambda_{ij}, \min_{j} \sum_{i=1}^{N} \lambda_{ij} \right) - \mu}, 1 \right]$$

and the arrival pattern NU1, respectively, while the numbers are 38.95% and 39.87% for SOP. This indicates that SOP is robust to different traffic patterns (note that neither SOP nor MM uses statistics information in the decision process).
and all states \(\mathcal{F}, J_{\beta_{OPT}}(\mathcal{F}) \geq \text{cong}(\mathcal{F}) \) if the total arrival rate at (intended for) each input (output) is greater than the service rate, i.e.,

\[
\min \left(\min_{i} \sum_{j=1}^{N} \lambda_{ij}, \min_{j} \sum_{i=1}^{N} \lambda_{ij} \right) > \mu.
\]

We prove Lemma 1 in Appendix C. Lemma 1 indicates that low packet loss can be obtained by choosing the next state so as to minimize this measure of congestion.

We present the heuristic now. The scheduling is to schedule the matching of largest size that minimizes \(\text{cong}(\mathcal{F}) \) of the next state \(\mathcal{F} \). Note that there can be several maximum matchings or matchings of the largest size. We choose a specific maximum matching that minimizes the congestion measure of the next state. Under such a matching, the congestion measure reduces by one whenever the currently scheduled packets complete transmission. Fast algorithms can be found for computing such matchings using the theory of edge coloring of bipartite graphs [15]. The memory management policy accepts packets without pushing out any existing packet as long as the input buffer has space (in fact, this is the optimal decision as shown in Appendix C). We consider the acceptance decision when an incoming packet finds the input buffer full. Let the current state be \(\mathcal{F} \). Suppose the packet is for input \(i \) and output \(j \). We consider the total number of packets waiting for each output across all inputs. Let this number be the maximum for output \(k \) among those outputs for which at least one packet waits at input \(i \), i.e.,

\[
k = \arg \max_{m \geq 0} \sum_{l=1}^{N} x_{lm}.
\]

The incoming packet is rejected if

\[
\sum_{l=1}^{N} x_{lj} \geq \sum_{l=1}^{N} x_{lk} - 1
\]

and accepted while pushing out a packet waiting for output \(k \) at input \(i \) otherwise. In other words, the acceptance policy reduces the load for a more heavily loaded output at the expense of that for a lightly loaded output. Overall, the policy minimizes the congestion at both inputs and outputs, and thus, we denote it as a policy which balances congestion at terminals (BCT). We present an example to illustrate this policy.

Example VI. Consider a 3 × 3 switch. Let the current state be \(\mathcal{F} \) with \(x_{11} = 2, x_{12} = x_{21} = x_{32} = 1 \). All other queues are empty. At most two packets can be transferred, and the matchings that transfer two packets are \([1 \rightarrow 1, 3 \rightarrow 2], [1 \rightarrow 2, 2 \rightarrow 1], [2 \rightarrow 1, 3 \rightarrow 2] \). The next states have congestion measures 2, 3, respectively, for these choices. Thus, either the first or the second matching can be selected. Suppose \(B = 3 \). New arrivals at inputs 2 and 3 are accepted without any push-out. Consider a new arrival at input 1 which is full. If the packet is for output 1 or 2, it is rejected. However, a new arrival for output 3 is accepted while pushing out a packet for output 1, since

\[
\sum_{m=1}^{3} x_{m1} > \sum_{m=1}^{3} x_{m3} + 1.
\]

BCT applies for 2 × 2 switches as well, and takes the same decisions as SOP there [12]. Weller et al. [14] proposed a similar scheduling strategy, and analyzed its throughput in the presence of infinite buffers and pseudodeterministic traffic arrival (an “\(\alpha \times \beta \)” traffic model) [14]. Iyer et al. [16] showed a similar scheduling strategy to be throughput optimal in \(N \times N \) switches. However, memory constraints were not considered in these, and as such the memory management component has not been proposed.

BCT’s average packet loss can be computed using MDP based techniques (Section III). We present the numerical performance evaluations for a 3 × 3 switch. We first compare the average packet losses of BCT and the optimal strategy. However, computation of the packet loss experienced by the optimal using MDP involves several iterations, each involving \(\Omega(\mathcal{F}^B) \) operations for buffer size \(B \). We could thus compare the performances for only small values of \(B (B = 5) \). First consider the case of uniform traffic \(\lambda_{ij} = \lambda, \forall i, j \), \(\lambda = \frac{1}{5} \mu \) for scaling purposes. Fig. 6 shows the performance curves. Now consider a nonuniform traffic pattern where the arrival rate in one queue is significantly higher than others. Specifically, \(\lambda_{11} = 9 \lambda, \lambda_{ij} = \lambda \) for \((i, j) \neq (1, 1) \) and \(\lambda = (1 - \mu)/17 \) (the last relation scales the sum of the arrival and departure rates to 1). Figs. 6 and 7 show that in both cases the packet loss of BCT is close to that of the optimum for all departure rates. MM performs inferior to BCT in both cases (the discrepancy is substantially higher for nonuniform traffic case). Investigations for other nonuniform traffic patterns indicate similar trends.

Buffer size of only five units may be small for drawing reliable conclusions. Thus, we compare the performance of both BCT and MM via simulation for larger \(B, B = 50 \). Note that MDP based computations need to consider about \(5\mathcal{F}^B \) operations in each iteration, and are thus computationally infeasible. Thus, we do not know the optimal packet loss rates. Nevertheless, the simulation results demonstrate the improvement obtained by
The packet losses are almost identical for BCT and the optimum, while MM has substantially higher packet loss than BCT.

Fig. 7. The figure compares the performances of the optimum strategy (OPT), BCT, and MM for different departure rates (μ) in a 3×3 switch with $B = 5$ and the following arrival rate patterns: $\lambda_{i1} = 9 \lambda$, $\lambda_{ij} = \lambda$, $(i, j) \neq (1, 1)$, $\lambda = \frac{1}{40 \lambda}$. The packet losses are almost identical for BCT and the optimum, while MM has substantially higher packet loss than BCT.

BCT over MM. In the uniform traffic case, MM is slightly inferior to BCT (Fig. 8), while in the nonuniform traffic case the difference is substantial (Fig. 9). BCT decreases the packet loss rate by more than 40% over MM (Fig. 9(b)) in certain cases! Once again, we observe similar differences in performances between BCT and MM for other nonuniform traffic patterns we considered. For instance, Fig. 10 shows the performance difference for bursty Poisson arrivals, with the bursts having a Pareto distribution ($F(x) \leq 1 - (b/x)^{\alpha}$, $b = 0.6$, $\alpha = 1.24$). The absolute values of the packet losses can be found in [12]. Like in the 2×2 case, the load balancing brought about by the memory management of BCT safeguards against the detrimental effect of the difference in arrival rates, while MM has no such protection, and this explains the difference in performance for nonuniform traffic patterns. We conclude that BCT is more robust than MM.

VI. DISCUSSION AND FUTURE RESEARCH ISSUES

We mention potential approaches for addressing several implementation-related challenges of the proposed algorithms, in context of the switching and wireless applications. We hope that this paper will entice further research required to “nail down these issues.”

Real-time traffic demands delay guarantees, and thus, loss minimization may not be enough. Packet deadline satisfaction can be facilitated in the proposed design if the oldest packet is discarded (or replaced by a new packet) from a stream during push-out (note that the push-out strategy decides the queue for push-out and any packet can be discarded from the chosen queue). Another approach is to deviate from the loss optimal scheduling and serve a packet if its deadline is about to expire.

Computing the desired matching for every scheduling decision may become computationally intensive, particularly for high-speed operations. Further research is required for designing a computationally simple scheduling that attains low
packet loss. A possible direction is to use approaches similar to those of Mekkittikul et al. [17] and Tassiulas [9] who simplified the throughput optimal scheduling strategies for switches with infinite buffers.

The proposed memory management uses packet push-out which may become difficult to implement, particularly for optical switches. An interesting topic for future research is to design a memory management strategy that minimizes packet loss under the constraint that existing packets cannot be discarded. Like the optimal strategy for a similar objective in shared memory switches [6], the optimal strategy in this case is likely to accept packets selectively even if the input buffer has space. We believe that a threshold-based packet acceptance policy will be required.

Our objective has been to minimize packet loss. We do not address fairness issues in this paper. For example, in Fig. 4 the proposed strategy may starve the queue x_{12} if the queue x_{21} has no packet, and queues x_{11}, x_{22} are heavily loaded. The fairness properties can be improved by forcing the scheduler to serve a queue if it has not received service for certain time, even at the cost of optimality. The time interval can be tuned to attain the desired tradeoff between fairness and optimality. Another possibility is to proceed in the direction of [18].

The scheduling strategy needs shared scheduling states in an input queued switch, and similarly a centralized coordination for application in wireless networks. Further research is needed to develop distributed scheduling strategies.

APPENDIX A

PROOF OF OPTIMALITY OF SOP FOR 2×2 SWITCHES WITH EQUAL ARRIVAL RATES

We outline the proof of Theorem 1 here. We deduce certain properties of the optimal discounted loss rate function $J_{\beta,\mathrm{OPT}}(\overline{x})$ for all \overline{x} and $\beta < 1$ using iteration (12) (Lemmas 2-6). The optimal strategy follows from these properties and (8)-(11). We state Lemmas 2 to 6 next, and prove them in Appendix D.

Let \overline{e}_i be a vector with a 1 in the ith component and 0’s in all other components, i.e., $\overline{e}_i = (1, 0, \ldots, 0, \ldots, 0)$.

Lemma 2: For each $i \in \{1, \ldots, 4\}$

$$J_{\beta,\mathrm{OPT}}(\overline{x}) \leq J_{\beta,\mathrm{OPT}}(\overline{x} + \overline{e}_i) \leq J_{\beta,\mathrm{OPT}}(\overline{x}) + 1.$$

Lemma 3:

$$J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_2 - \overline{e}_3) \leq J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_4)$$

if $\min(x_{11}, x_{12}, x_{21}) > 0$, (13)

$$J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_2 - \overline{e}_3) \leq J_{\beta,\mathrm{OPT}}(\overline{x})$$

if $\min(x_{12}, x_{21}, x_{22}) > 0$, (14)

$$J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_1 - \overline{e}_4) \leq J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_3)$$

if $\min(x_{11}, x_{12}, x_{22}) > 0$, (15)

$$J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_1 - \overline{e}_4) \leq J_{\beta,\mathrm{OPT}}(\overline{x} - \overline{e}_2)$$

if $\min(x_{11}, x_{12}, x_{22}) > 0$, (16)

Lemmas 2 and 3 hold even when the input buffers have unequal sizes (i.e., $B_1 \neq B_2$) and the arrival rates are unequal. We introduce new notations: $Q_1(\overline{x}) = x_{11} + x_{12}$ (queue length in input buffer 1) and $Q_2(\overline{x}) = x_{21} + x_{22}$ (queue length in input buffer 2).

Lemma 4: Let $\lambda_{11} = \lambda_{12}, \lambda_{21} = \lambda_{22},$ and $B_1 = B_2 = B$. Consider any two states \overline{x} and \overline{y} with equal input buffer occupancies, i.e., $Q_1(\overline{x}) = Q_1(\overline{y})$ and $Q_2(\overline{x}) = Q_2(\overline{y})$.

1) $J_{\beta,\mathrm{OPT}}(\overline{x}) = J_{\beta,\mathrm{OPT}}(\overline{y})$ if $D_1(\overline{x}) = D_1(\overline{y})$, \forall i.

2) $J_{\beta,\mathrm{OPT}}(\overline{x}) = J_{\beta,\mathrm{OPT}}(\overline{y})$ if $D_1(\overline{x}) = D_2(\overline{y})$, and $D_2(\overline{x}) = D_1(\overline{y})$.

3) $J_{\beta,\mathrm{OPT}}(\overline{x}) \leq J_{\beta,\mathrm{OPT}}(\overline{y})$ if
 a) $D_1(\overline{x}) \geq D_2(\overline{x}), D_1(\overline{y}) = D_1(\overline{x}) + p$, and $D_2(\overline{y}) = D_2(\overline{x}) - p, p \geq 0$, or
 b) $D_1(\overline{x}) \leq D_2(\overline{x}), D_1(\overline{y}) = D_1(\overline{x}) - p$, and $D_2(\overline{y}) = D_2(\overline{x}) + p, p \geq 0$.

Lemma 5: Let $\lambda_{11} = \lambda_{12}, \lambda_{21} = \lambda_{22},$ and $B_1 = B = B$. Then,

$$J_{\beta,\mathrm{OPT}}(x_{11}, x_{12}, x_{21}, x_{22}) = J_{\beta,\mathrm{OPT}}(x_{21}, x_{22}, x_{11}, x_{12}).$$

Lemma 6: Let $\lambda_{ij} = \lambda$, and $B_1 = B = B$. Consider two states \overline{x} and \overline{y} such that either

1) $Q_1(\overline{x}) \geq Q_1(\overline{y}), Q_1(\overline{y}) = Q_1(\overline{x}) + 1$, and $Q_2(\overline{y}) = Q_2(\overline{x}) - 1, D_1(\overline{x}) < D_1(\overline{y}), i = 1, 2$,

2) $Q_2(\overline{x}) \geq Q_2(\overline{y}), Q_2(\overline{y}) = Q_2(\overline{x}) + 1$, and $Q_1(\overline{y}) = Q_1(\overline{x}) - 1, D_1(\overline{x}) > D_1(\overline{y}), i = 1, 2$.

Then, $J_{\beta,\mathrm{OPT}}(\overline{x}) \leq J_{\beta,\mathrm{OPT}}(\overline{y})$.

Proof of Theorem 1: Note that $\pi_{\beta,\mathrm{OPT}}$ specified by (8) and (9) is the policy that minimizes the discounted loss rate (“optimal discounted policy”). We will show that SOP is $\pi_{\beta,\mathrm{OPT}}$ for any discount factor $\beta < 1$. Hence, from relations (10) and (11), SOP minimizes the average loss.

From (1), (9), and Lemma 2, the optimal discounted memory management policy drops packets or rejects new arrivals only.
when the corresponding input buffer is full, and no more than one packet is dropped/rejected.

From (8) and Lemmas 2 and 3, the optimal discounted policy schedules a pair of queues whenever possible.

From (8) and part 1) of Lemma 4, if all the queues have packets, then either pair can be scheduled, i.e., the optimal discounted scheduling does not distinguish between pairs.

Parts 2) and 3) of Lemma 4, and (9) show that the optimal discounted packet replacement policy is the same as SOP’s packet replacement policy when an incoming packet finds the input buffer full.

From (8), and part 2) of Lemma 4, the optimal policy is to schedule any one nonempty queue if two queues at one input are zero and the two queues at the other input have equal length. From (8) and Lemma 5, the optimal policy is to schedule any one nonempty queue if the two queues for one output are zero and the two queues for the other output have equal length. From (8), and part 3) of Lemma 4, and Lemma 6, the optimal discounted scheduling schedules the longer queue, if the system can only schedule one queue and the nonempty queues have unequal lengths.

\[\beta \in \left[\frac{N \ast B}{N \ast B + \min \left(\sum_{i=1}^{N} \lambda_{ij}, \min_{j} \sum_{i=1}^{N} \lambda_{ij} \right) - \mu} \right] \ast \{1\} \]

We will use induction and iteration (12). The method is as follows for all

\[J_{\beta,k}^{\text{OPT}}(\vec{x}) = \lim_{k \to \infty} J_{\beta,k}^{\text{OPT}}(\vec{x}) \]

\(J_{\beta,k}^{\text{OPT}}(\vec{x}) \) satisfies Lemma 1 for all

\[\beta \in \left[\frac{N \ast B}{N \ast B + \min \left(\sum_{i=1}^{N} \lambda_{ij}, \min_{j} \sum_{i=1}^{N} \lambda_{ij} \right) - \mu} \right] \ast \{1\} \]

For simplicity, we will refer to \(J_{\beta,k}^{\text{OPT}}(\vec{x}) \) as \(J(\vec{x}) \).

Proof of Lemma 1: Let

\[\gamma = \max_{\vec{x}} \frac{\text{cong}_{\text{imp}}(\vec{x})}{\text{cong}_{\text{exp}}(\vec{x}) + \min_{i} \sum_{j=1}^{N} \lambda_{ij} - \mu} \]

We show that \(J(\vec{x}) \) is \(\geq \text{cong}_{\text{imp}}(\vec{x}) \) for all \(\beta \in [\gamma, 1) \) and all states \(\vec{x} \). It can be similarly shown that \(J(\vec{x}) \) is \(\geq \text{cong}_{\text{exp}}(\vec{x}) \) for all

\[\beta \in \left[\max_{\vec{x}} \frac{\text{cong}_{\text{exp}}(\vec{x})}{\text{cong}_{\text{exp}}(\vec{x}) + \min_{j} \sum_{i=1}^{N} \lambda_{ij} - \mu} \right] \ast \{1\} \]

and all states \(\vec{x} \). We omit this part for brevity. The lemma follows since

\[\max_{\vec{x}} \text{cong}_{\text{exp}}(\vec{x}) = N \ast B \]

and

\[\max_{\vec{x}} \text{cong}_{\text{imp}}(\vec{x}) = B. \]

We assume that \(J(\vec{x}) \) is \(\geq \text{cong}_{\text{imp}}(\vec{x}) \) for all \(\beta \in [\gamma, 1) \) and all states \(\vec{x} \), and show the property for \(T_j(\vec{x}) \). For every state \(\vec{y} \) in \(S(\vec{x}) \)

\[\text{cong}_{\text{imp}}(\vec{y}) \geq \text{cong}_{\text{imp}}(\vec{x}) - 1. \]

This happens because the scheduling can remove at most one packet from any input. Let the input \(i \) be the most congested, i.e., it has the maximum number of packets waiting for transmission \((i = \arg \max_{k} \sum_{j=1}^{N} x_{kj}) \). We now show that for every state \(\vec{y} \) in \(\bigcup_{i=1}^{N} A(\vec{x}, i, j) \)

\[\text{cong}_{\text{imp}}(\vec{y}) + c(\vec{x}, \vec{y}) \geq \text{cong}_{\text{imp}}(\vec{x}) + 1. \]

\[= 1 + \text{cong}_{\text{imp}}(\vec{y}) + \sum_{j=1}^{N} x_{ij} - \sum_{j=1}^{N} y_{kj} \]

\[+ \sum_{1 \leq k \leq N : k \neq i} \sum_{j=1}^{N} (x_{kj} - y_{kj}) \text{ (from (1))} \]

\[\geq 1 + \sum_{j=1}^{N} x_{ij} \]

\[\geq 1 + \text{cong}_{\text{imp}}(\vec{x}) \text{ (since } i = \arg \max_{k} \sum_{j=1}^{N} x_{kj} \text{).} \]
Inequality (17) follows since
\[\text{cong}_{\text{simp}}(\gamma) \geq \sum_{j=1}^{N} y_{ij} \]
and \(x_{kj} \geq y_{kj}, \) for all \(k \neq i \) and \(j. \) The latter holds since \(\gamma \in \bigcup_{i=1}^{N} A(\gamma, i, j) \) and \(k \neq i. \)
For any state \(\gamma \in A(\gamma, i, j), \) \(i \neq l \)
\[\text{cong}_{\text{simp}}(\gamma) + c(\gamma, \bar{\gamma}) \geq \text{cong}_{\text{simp}}(\bar{\gamma}). \]
This can be shown similar to (18). The right-hand side of (17) should be replaced by \(\sum_{j=1}^{N} x_{ij} \). This inequality holds in this case as \(\text{cong}_{\text{simp}}(\gamma) \geq \sum_{j=1}^{N} y_{ij} \) and \(x_{kj} \geq y_{kj}, \) for all \(k \) and \(j, \) barring possibly for \(k = l \) and one value of \(j. \) In this case, \(y_{ij} = x_{ij} + 1 \)
\[T.J(\bar{\gamma}) = \frac{N}{N} \sum_{k=1}^{N} \min_{\gamma \in A(\hat{\gamma}, k)} \lambda_{kj} (c(\bar{\gamma}, \bar{\gamma}) + \beta J(\gamma)) \]
\[+ \beta \mu \min_{\gamma \in S(\bar{\gamma})} J(\gamma) \]
\[\geq \beta \sum_{j=1}^{N} \min_{\gamma \in A(\hat{\gamma}, k)} \lambda_{kj} (c(\bar{\gamma}, \bar{\gamma}) + \text{cong}_{\text{simp}}(\gamma)) \]
\[+ \beta \mu \sum_{j=1}^{N} \text{cong}_{\text{simp}}(\bar{\gamma}) \] (by induction hypothesis)
\[\geq \beta \sum_{j=1}^{N} \lambda_{ij} (1 + \text{cong}_{\text{simp}}(\bar{\gamma})) \]
\[+ \beta \sum_{j=1}^{N} \text{cong}_{\text{simp}}(\bar{\gamma}) + \beta \mu \left(\text{cong}_{\text{simp}}(\bar{\gamma}) - 1 \right) \]
\[= \beta \text{cong}_{\text{simp}}(\bar{\gamma}) \]
\[+ \beta \left(\sum_{j=1}^{N} \lambda_{ij} - \mu \right) \left(\text{since } \mu + \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij} = 1 \right) \]
\[\geq \text{cong}_{\text{simp}}(\bar{\gamma}) \] (since \(\sum_{j=1}^{N} \lambda_{ij} > \mu \) and \(\beta \geq \gamma \)).

\[J_{\beta, \text{OPT}}(\bar{\gamma}) = \lim_{k \to \infty} J_{\beta,k}(\bar{\gamma}) \]
\(J_{\beta, \text{OPT}}(\bar{\gamma}) \) satisfies these properties for all \(\beta < 1. \)

Proof of Lemma 2: Refer to technical report [12].

From Lemma 2, (20), and (21) and since \(\beta < 1, \) the following hold:
\[\phi(\bar{\gamma}) = \beta \min \left(\min_{\gamma} J(\bar{\gamma} - (e_i^-)^+) , J(\bar{\gamma} - (e_i^-)^+ - (e_j^-)^+) \right) \]
\[\theta_1(\bar{\gamma}) = 1 + \beta \min \left(J(\bar{\gamma}) , J(\bar{\gamma} + (e_i^-)^-) \right) \]
\[\theta_2(\bar{\gamma}) = 1 + \beta J(\bar{\gamma}) \]
The functions \(\theta_j(\bar{\gamma}) \) for \(j > 1 \) can be constructed similarly.

Proof of Lemma 3: Let \(\bar{\gamma} = (x_1, x_2, x_3, x_4) \). We will prove only the first inequality, i.e.,
\[J(\bar{\gamma} - (e_1^-)^-) \leq J(\bar{\gamma} - (e_2^-)^-) \] if \(\min(x_1, x_2, x_3) > 0. \)

The rest will follow similarly. We assume that this inequality holds for \(J(\bar{\gamma}) \) for all \(\bar{\gamma} \) and then show that this inequality holds for \(T.J(\bar{\gamma}) \) for all \(\bar{\gamma}. \)
Consider \(\bar{\gamma} \) such that \(\min(x_1, x_2, x_3) > 0. \) From (22)
\[\phi(\bar{\gamma} - (e_1^-)^-) \leq \beta J(\bar{\gamma} - (e_1^-)^-) \leq J(\bar{\gamma} - (2e_1^-)^-) \]
Now
\[\phi(\bar{\gamma} - (e_2^-)^-) = \beta \min \left(J(\bar{\gamma} - (e_1^-)^-) , J(\bar{\gamma} - (e_3^-)^-) \right) \]
\[\phi(\bar{\gamma} - (e_3^-)^-) \leq \beta J(\bar{\gamma} - (e_1^-)^-) - (e_2^-)^-) \]
If \(x_1 - 1 > 0, \) then by hypothesis
\[J(\bar{\gamma} - (e_1^-)^-) - (e_2^-)^-) \leq J(\bar{\gamma} - (2e_1^-)^-) \]

Appendix D

Proof of Lemmas 2–6

We prove Lemmas 2–6 in this appendix. These lemmas have been used for proving Theorems 1–3. As in the proof for Lemma 1, we will use induction and iteration (12). Note that \(J_{\beta, 0}(\bar{\gamma}) = 0 \) satisfies properties in Lemmas 2–6. Now we assume that \(J_{\beta,k}(\bar{\gamma}) \) satisfies these properties and show that \(T.J_{\beta,k}(\bar{\gamma}) \) and hence \(J_{\beta,k+1}(\bar{\gamma}) \) satisfy these properties. It
If \(x_1 - 1 = 0 \), then the preceding inequality holds from Lemma 2. Thus,
\[
\begin{align*}
J(\bar{x} - \bar{e}_1 - \bar{e}_2 - \bar{e}_3 - (\bar{e}_1)^+) & \leq J(\bar{x} - (2\bar{e}_1)^+ - (\bar{e}_1)^+) \\
J(\bar{x} - \bar{e}_1 - \bar{e}_2 - \bar{e}_3 - (\bar{e}_1)^+) & \leq J(\bar{x} - \bar{e}_1 - \bar{e}_2 - \bar{e}_3^+)
\end{align*}
\]
(36)

Thus,
\[
\phi(\bar{x} - \bar{e}_2 - \bar{e}_3) \leq \phi(\bar{x} - \bar{e}_1). \tag{26}
\]

We first show that \(\theta_j(\bar{x} - \bar{e}_2 - \bar{e}_3) \leq \theta_j(\bar{x} - \bar{e}_1) \) for \(j \leq 2 \). We consider two cases separately: a) \(x_1 + x_2 - 1 < B_1 \) and b) \(x_1 + x_2 - 1 = B_1 \). In the first case, the inequalities hold from (23) and hypothesis (note that (23) is stated only for \(\theta_1 \) function, but similar relations exist for \(\theta_j \) functions, \(j > 1 \)). Consider case b) now.

\[
\begin{align*}
\theta_1(\bar{x} - \bar{e}_2 - \bar{e}_3) & \leq 1 + \beta J(\bar{x} - \bar{e}_2 - \bar{e}_3) \quad \text{(from (24))} \\
& \leq 1 + \beta \min(J(\bar{x} - \bar{e}_2), J(\bar{x} - \bar{e}_1)) \\
& = \theta_1(\bar{x} - \bar{e}_1) \quad \text{(from hypothesis and Lemma 2)}
\end{align*}
\]
(27)

\[
\begin{align*}
\theta_2(\bar{x} - \bar{e}_2 - \bar{e}_3) & = 1 + \beta \min(J(\bar{x} - \bar{e}_2 - \bar{e}_3), J(\bar{x} - \bar{e}_1)) \\
& \leq 1 + \beta \min(J(\bar{x} - \bar{e}_2), J(\bar{x} - \bar{e}_2 + \bar{s}_1 + \bar{s}_2)) \\
& = \theta_2(\bar{x} - \bar{e}_1) \quad \text{(from hypothesis and Lemma 2)}
\end{align*}
\]
(28)

\[
\begin{align*}
\theta_j(\bar{x} - \bar{e}_2 - \bar{e}_3) & \leq \theta_j(\bar{x} - \bar{e}_1) \quad \text{for } j \leq 2 \\
& \quad \text{(from (27), (29), and (30))}
\end{align*}
\]
(29)

Now we will show that
\[
\theta_j(\bar{x} - \bar{e}_2 - \bar{e}_3) \leq \theta_j(\bar{x} - \bar{e}_1) \quad \text{for } j > 2.
\]
We consider two cases separately: a) \(x_3 + x_4 < B_2 \) and b) \(x_3 + x_4 = B_2 \). In the first case, the inequality holds from (23) and hypothesis. Consider case b) now.

\[
\begin{align*}
\theta_3(\bar{x} - \bar{e}_2 - \bar{e}_3) & = \beta J(\bar{x} - \bar{e}_2) \quad \text{(from (23))} \\
& \leq 1 + \beta J(\bar{x} - \bar{e}_1 - \bar{e}_2) \quad \text{(from Lemma 2)} \\
& \leq 1 + \beta J(\bar{x} - \bar{e}_1) \quad \text{(from Lemma 2)} \\
& \leq 1 + \beta J(\bar{x} - \bar{e}_1 + \bar{e}_3 - \bar{e}_4) \quad \text{(from hypothesis)} \\
& = \theta_3(\bar{x} - \bar{e}_1) \quad \text{if } x_4 > 0 \quad \text{(from (31))} \\
& \leq \theta_3(\bar{x} - \bar{e}_1) \quad \text{if } x_4 > 0 \quad \text{(from (24))}
\end{align*}
\]
(30)

\[
\begin{align*}
\theta_j(\bar{x} - \bar{e}_2 - \bar{e}_3) & \leq \theta_j(\bar{x} - \bar{e}_1) \quad \text{for } j > 2 \\
& \quad \text{(from (27), (30), and (33))}
\end{align*}
\]

The result follows from (26) and (36).

From Lemmas 2, 3, and (22), the following holds:
\[
\begin{align*}
\phi(\bar{x}) & = \beta J(\bar{x} - \bar{e}_1 - \bar{e}_3) \\
& \quad \text{if } \min(x_1, x_4) > \min(x_2, x_3) \text{ and } x_1 + x_2 - 1 < B_1 \quad \text{(37)} \\
\phi(\bar{x}) & = \beta J(\bar{x} - \bar{e}_2 - \bar{e}_3) \\
& \quad \text{if } \min(x_1, x_3) > \min(x_2, x_4) \text{ and } x_1 + x_2 - 1 = B_1 \quad \text{(38)} \\
\phi(\bar{x}) & = \beta \min(J(\bar{x} - \bar{e}_1 - \bar{e}_3), J(\bar{x} - \bar{e}_2 - \bar{e}_3)) \\
& \quad \text{if } x_1 > 0 \text{ and } x_3 > 0 \quad \text{(39)} \\
\phi(\bar{x}_i) & = \beta J(0, 0, \ldots, d - 1, 0, 0) \text{ if } d > 0. \quad \text{(40)}
\end{align*}
\]

Let \(\bar{x} = (x_1, x_2, x_3, x_4) \). Note that \(D_1(\bar{x}) = x_1 - x_4 \), \(D_2(\bar{x}) = x_2 - x_3 \), \(Q_1(\bar{x}) = x_1 + x_2 \), \(Q_2(\bar{x}) = x_3 + x_4 \). Consider two feasible states: \(\bar{x} \) and \(\bar{y} \), such that \(Q_1(\bar{x}) = Q_2(\bar{y}) \), \(i = 1, 2 \). Then
\[
\sum_{i=1}^{2} D_i(\bar{x}) = \sum_{i=1}^{2} D_i(\bar{y}).
\]

Thus, for any \(p \), if \(D_1(\bar{x}) = D_1(\bar{y}) + p \), then \(D_2(\bar{x}) = D_2(\bar{y}) - p \).

Proof of Lemma 4: We have shown in technical report [12] that \(J(x_1, x_2, x_3, x_4) = J(x_2, x_1, x_3, x_4) \). We refer to this property as part 0. We show parts 1–3 using part 0. We will assume all these properties for the function \(J(\bar{x}) \) and prove these for the function \(T.J(\bar{x}) \). We assume that a) \(B_1 = B_2 = B \) and b) \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 \).

Proof of Part 1: We consider two states
\[
\bar{x} = (x_1, x_2, x_3, x_4) \quad \text{and} \quad \bar{y} = (y_1, y_2, y_3, y_4)
\]
such that \(D_1(\bar{x}) = D_1(\bar{y}) \) and \(Q_1(\bar{x}) = Q_2(\bar{y}) \), \(\forall i \). By part 1 of hypothesis
\[
J(\bar{x}) = J(\bar{y}).
\]

We first show that either
\[
\max(\min(x_1, x_4), \min(x_2, x_3)) = 0
\]
or
\[
\max(\min(y_1, y_4), \min(y_2, y_3)) = 0
\]

then \(\bar{x} = \bar{y} \), and hence the result holds trivially. Consider the case that
\[
\max(\min(x_1, x_4), \min(x_2, x_3)) = 0.
\]
The result holds similarly if
\[
\max(\min(y_1, y_4), \min(y_2, y_3)) = 0.
\]

One of the following cases must happen: a) \(x_1 = x_2 = 0 \), b) \(x_3 = x_4 = 0 \), c) \(x_2 = x_4 = 0 \), and d) \(x_1 = x_3 = 0 \). For a), \(y_1 + y_2 = x_1 + x_2 = 0 \). Thus, \(y_1 = y_2 = 0 \). Also, \(x_1 - x_4 = y_1 - y_4 \). Thus, \(x_4 = y_4 \). Finally, \(x_2 - x_3 = y_2 - y_3 \).
Thus, $x_3 = y_3$. Thus, $\bar{x} = \bar{y}$. The result follows similarly for b). Consider c). Note that $x_1 = y_1 = y_4$ and $x_1 = y_1 + y_2$. Thus, $y_2 = y_4 = 0$. Thus, $x_1 = y_1$ and $x_3 = y_3$. Hence, $\bar{x} = \bar{y}$. The result follows similarly for d).

Thus, we assume that

$$\max (\min (x_1, x_4), \min (x_2, x_3)) > 0$$

and

$$\max (\min (y_1, y_4), \min (y_2, y_3)) > 0.$$

Let $\bar{x}_1 = \bar{x} - \bar{c}_1 - \bar{c}_1$, $\bar{x}_2 = \bar{x} - \bar{c}_2 - \bar{c}_2$, $\bar{y}_1 = \bar{y} - \bar{c}_1 - \bar{c}_4$, and $\bar{y}_2 = \bar{y} - \bar{c}_2 - \bar{c}_3$. Now, $\forall i \in \{1, 2\}$

$$D_i(\bar{x}_1) = D_i(\bar{x}_2) = D_i(\bar{x}) = D_i(\bar{y}_1) = D_i(\bar{y}_2)$$

and $Q_i(\bar{x}_1) = Q_i(\bar{x}_2) = Q_i(\bar{x}) - 1 = Q_i(\bar{y}_1) = Q_i(\bar{y}_2)$.

From part 1) of hypothesis

$$J(\bar{x}_1) = J(\bar{x}_2) = J(\bar{y}_1) = J(\bar{y}_2), \quad (41)$$

(All of the states $\bar{x}_1, \bar{x}_2, \bar{y}_1, \bar{y}_2$ need not be feasible. The equality applies only to the feasible states.)

Since

$$\max (\min (x_1, x_4), \min (x_2, x_3)) > 0$$

and from (37)-(39), we get (42) and (43) at the bottom of the page. From (41)-(43)

$$\phi(\bar{x}) = \phi(\bar{y}), \quad (44)$$

Next, we will show that $\theta_i(\bar{x}) = \theta_i(\bar{y})$, $\forall i$. We present the arguments for $i = 1$ here, and the rest of the cases will follow similarly. We consider two cases separately: a) $Q_1(\bar{x}) < B$ and b) $Q_1(\bar{x}) = B$.

In case a), $Q_1(\bar{y}) < B$. From (23), $\theta_1(\bar{x}) = \beta J(\bar{x} + \bar{c}_1)$ and $\theta_1(\bar{y}) = \beta J(\bar{y} + \bar{c}_4)$. Note that $D_1(\bar{x} + \bar{c}_1) = D_1(\bar{y} + \bar{c}_4)$ and $Q_1(\bar{x} + \bar{c}_1) = Q_1(\bar{y} + \bar{c}_4)$, $i = 1, 2$. From part 1) of hypothesis, $J(\bar{x} + \bar{c}_1) = J(\bar{y} + \bar{c}_4)$. Thus, $\theta_1(\bar{x}) = \theta_1(\bar{y})$.

Now consider case b), i.e., $Q_1(\bar{x}) = B$. Thus, $Q_1(\bar{y}) = B$.

We consider four subcases: i) $x_2 = y_2 = 0$, ii) $x_2 = 0$, $y_2 > 0$, iii) $x_2 > 0$, $y_2 = 0$, and iv) $x_2 > 0$, $y_2 > 0$.

In subcase i), from (25), $\theta_1(\bar{x}) = 1 + \beta J(\bar{x})$ and $\theta_1(\bar{y}) = 1 + \beta J(\bar{y})$. From part 1) of hypothesis, $\theta_1(\bar{x}) = \theta_1(\bar{y})$.

In subcase ii), $x_1 = B$. From (25)

$$\theta_1(\bar{x}) = 1 + \beta J(\bar{x}), \quad \theta_1(\bar{y}) = 1 + \beta \min (J(\bar{y}), J(\bar{y} + \bar{c}_1 - \bar{c}_2)).$$

We will show that $J(\bar{y}) \leq J(\bar{y} + \bar{c}_1 - \bar{c}_2)$, and thus $\theta_1(\bar{y}) = 1 + \beta J(\bar{y})$. Hence, from part 1) of hypothesis, $\theta_1(\bar{x}) = \theta_1(\bar{y})$.

Now we show that $J(\bar{y}) \leq J(\bar{y} + \bar{c}_1 - \bar{c}_2)$

$$D_2(\bar{y}) = D_2(\bar{x}) = -x_4 \leq 0 \iff x_4 = x_1 - x_4 = D_1(\bar{x}) = D_1(\bar{y});$$

(recall that $x_4 \leq B$ and thus $0 \leq B - x_4$). Thus,

$$D_2(\bar{y}) \leq D_2(\bar{x})$$

and

$$D_2(\bar{y} + \bar{c}_1 - \bar{c}_2) = D_2(\bar{y}) + 1$$

$$D_2(\bar{y} + \bar{c}_1 - \bar{c}_2) = D_2(\bar{x}) - 1$$

and $Q_2(\bar{y} + \bar{c}_1 - \bar{c}_2) = Q_2(\bar{x})$, $i = 1, 2$.

From part 3) of hypothesis, $J(\bar{y}) \leq J(\bar{y} + \bar{c}_1 - \bar{c}_2)$. The argument is similar for subcase iii). Consider subcase iv)

$$\theta_1(\bar{x}) = 1 + \beta \min (J(\bar{x}), J(\bar{x} + \bar{c}_1 - \bar{c}_2)) = \theta_1(\bar{y}),$$

Now

$$D_1(\bar{x} + \bar{c}_1 - \bar{c}_2) = D_1(\bar{y} + \bar{c}_1 - \bar{c}_2), \quad i = 1, 2$$

$$Q_1(\bar{x} + \bar{c}_1 - \bar{c}_2) = Q_1(\bar{y} + \bar{c}_1 - \bar{c}_2) = Q_1(\bar{x})$$

$$\theta_1(\bar{x}) = \theta_1(\bar{y}), \quad (45)$$

From (44) and (45), $T.J(\bar{x}) = T.J(\bar{y})$. Part 1) follows.

Proof of Part 2: We consider two states \bar{x} and \bar{y} such that $Q_1(\bar{x}) = Q_1(\bar{y})$, $\forall i$. $D_1(\bar{x}) = D_2(\bar{x})$, and $D_2(\bar{x}) = D_1(\bar{y})$. Let $\bar{u} = (x_2, x_1, x_4, x_3)$. From part 0

$$T.J(\bar{x}) = T.J(\bar{u}), \quad (46)$$

Note that $Q_1(\bar{x}) = Q_1(\bar{u})$, $\forall i$. $D_1(\bar{x}) = D_2(\bar{x})$, and $D_2(\bar{x}) = D_1(\bar{y})$. Thus, $D_1(\bar{u}) = D_1(\bar{y})$ and $Q_1(\bar{u}) = Q_1(\bar{x})$, $i = 1, 2$.

From part 1)

$$T.J(\bar{x}) = T.J(\bar{y}), \quad (47)$$

From and (47), $T.J(\bar{x}) = T.J(\bar{y})$. Part 2) follows.

Proof of Part 3: We consider two states \bar{x} and \bar{y} such that $Q_1(\bar{x}) = Q_1(\bar{y})$, $\forall i$. If $D_1(\bar{x}) \geq D_2(\bar{x})$, then $D_1(\bar{y}) = D_1(\bar{x}) + p$ and $D_2(\bar{y}) = D_2(\bar{x}) - p$. But, if $D_1(\bar{x}) \leq D_2(\bar{x})$, then $D_1(\bar{y}) = D_1(\bar{x}) - p$ and $D_2(\bar{y}) = D_2(\bar{x}) + p$. $p \geq 0$. We assume that $J(\bar{x}) \leq J(\bar{y})$, and show that $T.J(\bar{x}) \leq T.J(\bar{y})$. We show the result for the case when $D_1(\bar{x}) \geq D_2(\bar{x})$, $D_1(\bar{y}) = D_1(\bar{x}) + p$, and $D_2(\bar{y}) = D_2(\bar{x}) - p$, $p \geq 0$. The result follows similarly in the other case. If $p = 0$, then the result follows from part 1). So let $p > 0$.

$$\phi(\bar{x}) = \begin{cases}
\beta J(\bar{y}1) & \text{if } \min (x_2, x_3) = 0 \\
\beta J(\bar{x}2) & \text{if } \min (x_1, x_4) = 0 \\
\beta \min (J(\bar{x}1), J(\bar{x}2)) & \text{otherwise}
\end{cases}$$

and \bar{x}_1, \bar{x}_2 are feasible otherwise.

$$\phi(\bar{y}) = \begin{cases}
\beta J(\bar{y}1) & \text{if } \min (y_2, y_3) = 0 \\
\beta J(\bar{y}2) & \text{if } \min (y_1, y_4) = 0 \\
\beta \min (J(\bar{y}1), J(\bar{y}2)) & \text{otherwise}
\end{cases}$$

and \bar{y}_1, \bar{y}_2 are feasible otherwise.
We first show that $\phi(\bar{x}) \leq \phi(\bar{y})$. We consider four subcases separately:

a) $\max (\min(x_1, x_2), \min(x_2, x_3)) > 0$ and $\max (\min(y_1, y_2), \min(y_2, y_3)) > 0$;

b) $\max (\min(x_1, x_4), \min(x_2, x_3)) = 0$ and $\max (\min(y_1, y_3), \min(y_2, y_3)) > 0$;

c) $\max (\min(x_1, x_4), \min(x_2, x_3)) > 0$ and $\max (\min(y_1, y_3), \min(y_2, y_3)) = 0$;

d) $\max (\min(x_1, x_4), \min(x_2, x_3)) = 0$ and $\max (\min(y_1, y_3), \min(y_2, y_3)) = 0$.

First consider subcase (a). Let $\bar{x}_1 = (x_1 - 1, x_2, x_3, x_4 - 1)$, $\bar{x}_2 = (x_1, x_2 - 1, x_3 - 1, x_4)$, $\bar{y}_1 = (y_1 - 1, y_2, y_3, y_4 - 1)$, and $\bar{y}_2 = (y_1, y_2 - 1, y_3 - 1, y_4)$. Now, $\forall i \in \{1, 2\}$

$D_i(\bar{x}_1) = D_i(\bar{x}_2) = D_i(\bar{y})$ and $D_i(\bar{y}_1) = D_i(\bar{y}_2)$.

Thus,

$D_1(\bar{x}_1) \geq D_2(\bar{x}_1), \quad D_1(\bar{y}_1) = D_1(\bar{y}_2) + p$

$D_2(\bar{y}_1) = D_2(\bar{y}_2) - p, \quad p > 0, \quad j, k \in \{1, 2\}$.

Also, $\forall i \in \{1, 2\}$

$Q_i(\bar{x}_1) = Q_i(\bar{x}_2) = Q_i(\bar{y}) - 1 = Q_i(\bar{y}_1) - 1 = Q_i(\bar{y}_2)$.

From part 3) of hypothesis

$J(\bar{x}_1) \leq J(\bar{y}_1), \quad j, k \in \{1, 2\}$. (48)

(All states $\bar{x}_1, \bar{x}_2, \bar{y}_1, \bar{y}_2$ need not be feasible. The inequality applies only to the feasible states.) From (37)-(39) and since

$\max (\min(x_1, x_4), \min(x_2, x_3)) > 0$

$\max (\min(y_1, y_3), \min(y_2, y_3)) > 0$

we get (49) and (50) at the bottom of the page.

It follows from (48)-(50) that $\phi(\bar{x}) \leq \phi(\bar{y})$.

We will use the following results for the other three subcases:

$\max (x_1, x_3) > 0$ \quad (51)

$\max (x_2, x_4) > 0$ \quad (52)

$\max (y_1, y_3) > 0$. \quad (53)

We prove these as follows. First, let $x_1 = x_3 = 0$. Since $D_2(\bar{x}) \leq D_1(\bar{x})$, $x_2 < -x_4$. Thus, $x_2 = x_4 = 0$. Thus, $Q_i(\bar{x}) = 0, i = 1, 2$. Thus, $Q_i(\bar{y}) = 0, i = 1, 2$. Thus, $y_2 = 0$, for all i. Thus, $D_i(\bar{y}) = 0 = D_i(\bar{x})$ which contradicts the assumption that $p > 0$. Next, assume that $x_2 = x_4 = 0$. Now, $D_1(\bar{y}) = D_1(\bar{x}) + p$ implies that $y_1 - y_4 = x_1 + p$. Thus, $p > 0, y_1 > x_1$. Thus, $Q_i(\bar{y}) \geq y_1 > x_1 = Q_i(\bar{x})$, which contradicts the assumption that $Q_i(\bar{y}) = Q_i(\bar{x})$ (note that $Q_i(\bar{x}) = x_1$ since $x_2 = 0$). Finally, let $y_1 = y_3 = 0$. Since $D_2(\bar{y}) \leq D_1(\bar{y})$, $y_2 \leq -y_4$. Thus, $y_2 = y_4 = 0$. Thus, $Q_i(\bar{y}) = 0, i = 1, 2$. Thus, $Q_i(\bar{x}) = 0, i = 1, 2$. Thus, $x_1 = x_3$ for all i. Thus, $D_j(\bar{y}) = 0 = D_j(\bar{x})$ which contradicts the assumption that $p > 0$.

Using contradiction, we now show that subcase b) does not occur. Let subcase b) occur. Since

$\max (\min(x_1, x_4), \min(x_2, x_3)) = 0$

and (51), (52) hold, one of the following two cases must happen:

i) $x_1 = x_2 = 0$, ii) $x_3 = x_4 = 0$. In the first case, $Q_i(\bar{x}) = 0$. Thus, $Q_i(\bar{y}) = 0$. Thus, $y_1 = y_2 = 0$. Thus, $\max (\min(y_1, y_3), \min(y_2, y_3)) = 0$

which contradicts the assumption. Now let $x_3 = x_4 = 0$. Thus, $Q_i(\bar{y}) = 0$. Thus, $y_3 = y_4 = 0$. Thus, $\max (\min(y_1, y_3), \min(y_2, y_3)) = 0$

which contradicts the assumption. Thus, subcase b) does not occur.

Now consider subcase c). Since

$\max (\min(y_1, y_4), \min(y_2, y_3)) > 0$

and (53) holds, one of the following three cases must happen: i) $y_1 = y_2 = 0$, ii) $y_3 = y_4 = 0$, and iii) $y_2 = y_4 = 0$. Arguing as for subcase b), the first two cases imply that

$\max (\min(x_1, x_4), \min(x_2, x_3)) = 0$

and thus these cases are ruled out. Thus, $\bar{y} = (y_1, 0, y_3, 0)$, and furthermore $y_1 > 0$ and $y_3 > 0$. Otherwise, $Q_i(\bar{y}) = 0$ for some i and thus $Q_i(\bar{x}) = 0$ for some i. Thus, either $x_1 = x_2 = 0$ or $x_3 = x_4 = 0$ which means

$\max (\min(x_1, x_4), \min(x_2, x_3)) = 0$

and this contradicts the assumption for this subcase.

Let $\bar{x}_1 = (x_1 - 1, x_2, x_3, x_4 - 1)$, $\bar{x}_2 = (x_1, x_2 - 1, x_3 - 1, x_4)$, Since $\max (\min(x_1, x_4), \min(x_2, x_3)) > 0$ from (37)-(39), we get (54) at the bottom of the page.

Let $\bar{y}_1 = (y_1 - 1, 0, y_3 - 1, 0)$. Thus,

$D_1(\bar{y}_1) = D_1(\bar{y}) + 1, \quad D_2(\bar{y}) = D_2(\bar{x}) + p - 1$.

Thus,

$D_1(\bar{y}_1) = D_1(\bar{x}) + p - 1, \quad D_2(\bar{y}) = D_2(\bar{x}) - (p - 1)$.

Also,

$D_j(\bar{x}) = D_j(\bar{x}) \quad \forall i, j \in \{1, 2\}$.

\[
\phi(\bar{x}) = \begin{cases}
\beta J(\bar{x}_1) & \text{if } \min(y_2, x_3) = 0 \\
\beta J(\bar{x}_2) & \text{if } \min(x_1, x_4) = 0 \\
\beta \min(J(\bar{x}_1), J(\bar{x}_2)) & \text{else}
\end{cases}
\]

\[
\phi(\bar{y}) = \begin{cases}
\beta J(\bar{y}_1) & \text{if } \min(y_2, y_3) = 0 \\
\beta J(\bar{y}_2) & \text{if } \min(y_1, y_4) = 0 \\
\beta \min(J(\bar{y}_1), J(\bar{y}_2)) & \text{else}
\end{cases}
\]
Thus,
\[
D_1(y_1) = D_2(x_j) + p - 1
\]
\[
D_2(y_1) = D_2(x_j) - (p - 1)
\]
\[
D_1(x_j) \geq D_2(x_j), \quad j = 1, 2.
\]

Also,
\[
Q_2(x_1) = Q_2(x_2) = Q_2(x) - 1
\]
\[
= Q_2(y_2) - 1 = Q_2(y_1), \quad i = 1, 2.
\]

Since \(p > 1 \), from part 3 of hypothesis
\[
J(x_j) \leq J(y_1), \quad \forall j \in \{1, 2\}. \tag{55}
\]

Both states \(x_1, x_2 \) need not be feasible. The inequality applies only to the feasible states. From (22)
\[
\phi(y_1) = \beta \min(J(y_1 - 1, 0, y_2, 0), J(y_1, 0, y_2 - 1, 0))
\]
\[
\geq \beta J(y_1) \quad \text{(from Lemma 2)}, \tag{56}
\]

From (54)–(56) it follows that \(\phi(x) \leq \phi(y) \).

Now consider subcase d). From (51), (52) and since
\[
\max(\min(x_1, x_2), \min(x_2, x_3)) = 0
\]
one of the following two cases must happen: i) \(x_3 = x_4 = 0 \), and ii) \(x_1 = x_2 = 0 \). We argue the result only for case i). The result can be argued similarly for case ii). Here, \(Q_2(y_1) = 0 \).

Thus, \(Q_2(y_1) = 0 \). Thus, \(y_3 = y_4 = 0 \). Thus.
\[
D_1(x) = x_1,
\]
\[
D_2(x) = x_2,
\]
\[
D_1(y_1) = y_1,
\]
\[
D_2(y_1) = y_2.
\]

Thus, \(y_1 = x_1 + p \), \(x_1 \geq x_2 \), \(x_2 = y_2 \) and \(y_2 = 0 \). The states \(x - e_1, x - e_2, y - e_1 \) are feasible since \(y_1 > x_1 \geq x_2 > y_2 \geq 0 \). However, state \(y - e_2 \) need not be feasible. From (22), and since \(x_i = y_j = 0 \) \(\forall i, j \in \{3, 4\} \)
\[
\phi(x) = \beta \min(J(x - e_1), J(x - e_2))
\]
\[
\leq \beta J(x - e_2) \tag{57}
\]

and we get (58) at the bottom of the page. Here
\[
D_1(x - e_2) = D_2(x) \quad \text{and} \quad D_2(x - e_2) = D_2(x) - 1
\]
\[
D_1(y - e_1) = D_1(y) - 1 \quad \text{and} \quad D_2(y - e_1) = D_2(y)
\]
\[
D_1(y - e_2) = D_1(y) \quad \text{and} \quad D_2(y - e_2) = D_2(y) - 1.
\]

Thus,
\[
D_1(y - e_1) = D_1(x - e_2) + p - 1
\]
\[
D_2(y - e_1) = D_2(x - e_2) - (p - 1)
\]
\[
D_1(y - e_2) = D_1(x - e_2) + p
\]
\[
D_2(y - e_2) = D_2(x - e_2) - p
\]
\[
D_1(x - e_2) \geq D_2(x - e_2) \quad \text{(since} D_1(x) \geq D_2(x)).
\]

Also,
\[
Q_1(x - e_2) = Q_1(x) - 1 = Q_1(y) - 1 = Q_1(y - e_1)
\]
\[
= Q_1(y - e_2).
\]

\[
Q_2(x - e_2) = Q_2(y - e_1) = Q_2(y - e_2) = 0
\]

(since \(x_i = y_j = 0 \), \(\forall i, j \in \{3, 4\} \)).

From part 3 of hypothesis and since \(p > 0 \)
\[
J(x - e_2) \leq J(y - e_2) \quad i = 1, 2. \tag{59}
\]

(The inequality applies to state \(y - e_2 \) only if it is feasible.)

From (57)–(59), it follows that \(\phi(x) \leq \phi(y) \). Thus, for the valid subcases a), c), and d)
\[
\phi(x) \leq \phi(y). \tag{60}
\]

Now, we will show that \(\theta_i(x) \leq \theta_i(y) \), \(\forall i \). We present the arguments for \(i = 1, 2 \) here, and the rest of the cases will follow similarly.

First consider \(i = 1 \). We consider two cases separately: i) \(Q_1(x) < B \) and ii) \(Q_1(x) = B \).

Under i), \(Q_1(y) < B \). Thus, from (23)
\[
\theta_1(x) = \beta J(x + e_1) \quad \text{and} \quad \theta_1(y) = \beta J(y + e_1)
\]
\[
D_1(x + e_1) = D_1(x) + 1 \quad \text{and} \quad D_2(x + e_1) = D_2(x)
\]
\[
D_1(y + e_1) = D_1(y) + 1 \quad \text{and} \quad D_2(y + e_1) = D_2(y).
\]

Thus,
\[
D_1(y + e_1) = D_1(x + e_1) + p
\]
\[
D_2(y + e_1) = D_2(x + e_1) - p
\]
\[
D_1(x + e_1) > D_2(x + e_1) \quad \text{(since} D_1(x) \geq D_2(x)).
\]

Also,
\[
Q_1(x + e_1) = Q_1(y + e_1), \quad i = 1, 2.
\]

Thus, from part 3 of hypothesis
\[
J(x + e_1) \leq J(y + e_1).
\]

Thus,
\[
\theta_1(x) \leq \theta_1(y). \tag{61}
\]

Now consider ii), i.e., \(Q_1(x) = B \). Thus, \(Q_1(y) = B \). From (24) and (25)
\[
\theta_1(x) \leq 1 + \beta J(x), \tag{61}
\]

and we get (62) at the bottom of the following page. Now
\[
D_1(y + e_1 - e_2) = D_1(y) + 1 \quad \text{and} \quad D_2(y + e_1 - e_2) = D_2(y) - 1.
\]

Thus,
\[
D_1(y + e_1 - e_2) = D_1(x) + p + 1
\]
\[
D_2(y + e_1 - e_2) = D_2(x) - p - 1
\]

\[
\phi(y) = \begin{cases}
\beta J(y + e_1)
& \text{if } y_2 = 0 \\
\beta \min(J(y + e_1), J(y - e_2)) & \text{if } y_2 > 0.
\end{cases} \tag{58}
\]
and \(D_1(\bar{x}) \geq D_2(\bar{x}) \). Also, \(Q_i(\bar{x}) = Q_i(\bar{y} + \bar{e}_1 - \bar{e}_2), \ i = 1,2 \). From part 3) of hypothesis

\[
J(\bar{x}) \leq J(\bar{y} + \bar{e}_1 - \bar{e}_2), \quad \text{if } y_2 > 0 \tag{63}
\]

\[
J(\bar{x}) \leq J(\bar{y}), \tag{64}
\]

From (61)–(64), \(\theta_1(\bar{x}) \leq \theta_2(\bar{y}) \).

Now, we will show that \(\theta_1(\bar{x}) \leq \theta_2(\bar{y}) \). We consider two cases separately: i) \(Q_1(\bar{x}) < B \) and ii) \(Q_1(\bar{x}) = B \).

Under i), \(Q_1(\bar{y}) < B \). Thus, from (23)

\[
\theta_2(\bar{x}) = \beta J(\bar{x} + \bar{e}_2) \quad \text{and} \quad \theta_2(\bar{y}) = \beta J(\bar{y} + \bar{e}_2).
\]

First let \(D_1(\bar{x}) > D_2(\bar{x}) \). Now

\[
D_1(\bar{x} + \bar{e}_2) = D_1(\bar{x}) \quad \text{and} \quad D_2(\bar{x} + \bar{e}_2) = D_2(\bar{x}) + 1
\]

Thus,

\[
D_1(\bar{y} + \bar{e}_2) = D_1(\bar{y}) + p
\]

\[
D_2(\bar{y} + \bar{e}_2) = D_2(\bar{y}) + p
\]

\[
D_1(\bar{x} + \bar{e}_2) \geq D_2(\bar{x} + \bar{e}_2) \quad \text{(since } D_1(\bar{x}) > D_2(\bar{x})\text{)}
\]

\[
Q_i(\bar{x} + \bar{e}_2) = Q_i(\bar{y} + \bar{e}_2), \quad i = 1,2.
\]

Thus, from part 3) of hypothesis

\[
J(\bar{x} + \bar{e}_2) \leq J(\bar{y} + \bar{e}_2).
\]

Thus,

\[
\theta_2(\bar{x}) \leq \theta_2(\bar{y}).
\]

Now let \(D_1(\bar{x}) = D_2(\bar{x}) = r \). Thus,

\[
D_1(\bar{x} + \bar{e}_2) = r \quad \text{and} \quad D_2(\bar{x} + \bar{e}_2) = r + 1
\]

\[
D_1(\bar{x} + \bar{e}_2) = r + 1 \quad \text{and} \quad D_2(\bar{x} + \bar{e}_2) = r.
\]

Thus,

\[
D_1(\bar{x} + \bar{e}_2) = D_2(\bar{x} + \bar{e}_2) \quad \text{and} \quad D_2(\bar{x} + \bar{e}_2) = D_1(\bar{x} + \bar{e}_2).
\]

Also,

\[
Q_i(\bar{x} + \bar{e}_2) = Q_i(\bar{y} + \bar{e}_2), \quad i = 1,2.
\]

Thus, from part 2) of hypothesis

\[
J(\bar{x} + \bar{e}_2) = J(\bar{y} + \bar{e}_2).
\]

We will show that \(J(\bar{x} + \bar{e}_2) \leq J(\bar{y} + \bar{e}_2) \). Now

\[
D_1(\bar{y} + \bar{e}_2) = D_1(\bar{y}) + p
\]

\[
= D_1(\bar{x} + \bar{e}_2) + p - 1 \quad \text{(since } D_1(\bar{x} + \bar{e}_2) = D_1(\bar{x}) + 1\text{)} \tag{65}
\]

\[
D_2(\bar{y} + \bar{e}_2) = D_2(\bar{y}) + 1
\]

\[
= D_2(\bar{x} + \bar{e}_2) - p + 1
\]

\[
= D_2(\bar{y} + \bar{e}_2) - (p - 1)
\]

\[
\theta_1(\bar{y}) = \begin{cases} 1 + \beta J(\bar{y}) & \text{if } y_2 = 0 \\ 1 + \beta \min(J(\bar{y} + \bar{e}_1 - \bar{e}_2), J(\bar{y})) & \text{if } y_2 > 0 \end{cases}
\]

(62)

\[
D_1(\bar{x} + \bar{e}_2) > D_2(\bar{x} + \bar{e}_2) \quad \text{(since } D_1(\bar{x} + \bar{e}_2) = r + 1 \quad \text{and} \quad D_2(\bar{x} + \bar{e}_2) = r \text{)} \tag{66}
\]

\[
Q_i(\bar{x} + \bar{e}_2) = Q_i(\bar{y} + \bar{e}_2), \quad i = 1,2.
\]

(68)

From (65)–(68), part 3) of hypothesis, and since \(p > 0 \), \(J(\bar{x} + \bar{e}_1) \leq J(\bar{y} + \bar{e}_2) \). Thus,

\[
\theta_2(\bar{x}) = \beta J(\bar{x} + \bar{e}_2) \quad \text{(since } Q_1(\bar{x}) < B\text{)}
\]

\[
= \beta J(\bar{x} + \bar{e}_1) \leq \beta J(\bar{y} + \bar{e}_2) = \theta_2(\bar{y}) \quad \text{(since } Q_1(\bar{y}) < B\text{)}.
\]

Now consider case ii), i.e., \(Q_1(\bar{x}) = B \). From (24) and (25)

\[
\theta_2(\bar{x}) \leq 1 + \beta J(\bar{y}).
\]

(69)

Since \(Q_1(\bar{x}) = B, Q_1(\bar{y}) = B \). If \(y_1 = 0 \), then \(y_2 = B \) and \(D_1(\bar{y}) \leq 0 \). Then, \(D_2(\bar{y}) < 0 \) as \(D_2(\bar{y}) > D_2(\bar{y}) \). But \(D_2(\bar{y}) \geq 0 \), as \(y_2 = B \). Thus, \(y_1 > 0 \). Thus, \(\bar{y} - \bar{e}_1 + \bar{e}_2 \) is feasible. From (24)

\[
\theta_2(\bar{y}) = 1 + \beta \min(J(\bar{y} - \bar{e}_1 + \bar{e}_2), J(\bar{y})).
\]

(70)

Now

\[
D_1(\bar{y} - \bar{e}_1 + \bar{e}_2) = D_1(\bar{y}) - 1
\]

and

\[
D_2(\bar{y} - \bar{e}_1 + \bar{e}_2) = D_2(\bar{y}) + 1.
\]

Thus,

\[
D_1(\bar{y} - \bar{e}_1 + \bar{e}_2) = D_1(\bar{y}) + p - 1
\]

\[
D_2(\bar{y} - \bar{e}_1 + \bar{e}_2) = D_2(\bar{y}) - (p - 1)
\]

and \(D_1(\bar{x}) \geq D_2(\bar{x}) \). Also, \(Q_i(\bar{x}) = Q_i(\bar{y} - \bar{e}_1 + \bar{e}_2), i = 1,2 \).

From part 3) of hypothesis and since \(p > 0 \)

\[
J(\bar{x}) \leq \min(J(\bar{y} - \bar{e}_1 + \bar{e}_2), J(\bar{y})).
\]

(71)

From (69)–(71)

\[
\theta_2(\bar{x}) \leq \theta_2(\bar{y}).
\]

Thus,

\[
\theta_1(\bar{x}) \leq \theta_2(\bar{y}), \quad \forall i.
\]

(72)

From (60) and (72), \(T_1(\bar{x}) \leq T_1(\bar{y}) \). Part 3) follows.

Proof of Lemma 5: Refer to technical report [12].
Proof of Lemma 6: We assume that $B_1 = B_2$ and $\lambda_2 = \lambda$, \forall i. Let $\bar{\mathbf{x}} = (x_1, x_2, x_3, x_4)$ and $\bar{\mathbf{y}} = (y_1, y_2, y_3, y_4)$ satisfy the following properties: $Q_1(\bar{\mathbf{x}}) \geq Q_2(\bar{\mathbf{x}})$, $Q_1(\bar{\mathbf{y}}) = Q_1(\bar{\mathbf{x}}) + 1$, and $Q_2(\bar{\mathbf{y}}) = Q_2(\bar{\mathbf{x}}) - 1$. $D_i(\bar{\mathbf{x}}) < D_i(\bar{\mathbf{y}})$, $i = 1, 2$. We assume that $J(\bar{\mathbf{x}}) \leq J(\bar{\mathbf{y}})$, and show that $TJ(\bar{\mathbf{x}}) \leq TJ(\bar{\mathbf{y}})$. This proves the lemma when part 1) holds. The proof for the case when part 2) holds is similar, and omitted for brevity.

First, we will prove the following properties of states $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$:

$$Q_i(\bar{\mathbf{x}}) > 0, \quad i = 1, 2 \tag{74}$$

$$D_i(\bar{\mathbf{x}}) = D_i(\bar{\mathbf{y}}) - 1, \quad i = 1, 2 \tag{75}$$

If $x_1 = x_3 = 0$, then $y_1 = y_3 = 0$, \tag{76}

If $x_2 = x_4 = 0$, then $y_2 = y_4 = 0$, \tag{77}

Inequality (74) follows since $Q_1(\bar{\mathbf{x}}) \geq Q_2(\bar{\mathbf{x}}) > Q_2(\bar{\mathbf{y}}) \geq 0$. We now prove (75):

$$(x_1 - x_4) + (x_2 - x_3) = (x_1 + x_2) - (x_3 + x_4)$$

$$= Q_1(\bar{\mathbf{x}}) - Q_2(\bar{\mathbf{x}})$$

$$= Q_1(\bar{\mathbf{y}}) - 1 - Q_2(\bar{\mathbf{y}}) - 1$$

$$= (y_1 + y_2) - 1 - (y_3 + y_4) - 1$$

$$= (y_1 - y_4 - 1) + (y_2 - y_3 - 1). \tag{78}$$

Since $D_i(\bar{\mathbf{x}}) < D_i(\bar{\mathbf{y}})$, $i = 1, 2$

$$x_1 - x_4 \leq y_1 - y_4 - 1 \tag{79}$$

$$x_2 - x_3 \leq y_2 - y_3 - 1. \tag{80}$$

From (78)–(80)

$$x_1 - x_4 = y_1 - y_4 - 1 \tag{81}$$

$$x_2 - x_3 = y_2 - y_3 - 1. \tag{82}$$

Thus, (75) follows. Now we show (76). Let $x_1 = x_3 = 0$. From (82), $y_2 = y_3 = x_2 + 1$. Since $Q_1(\bar{\mathbf{y}}) = Q_1(\bar{\mathbf{x}}) + 1$, $y_1 + y_2 = x_1 + 1$. Thus, $y_1 = y_3 = 0$.

Now we show (77). Let $x_2 = x_4 = 0$. From (81), $y_1 = y_4 = x_1 + 1$. Since $Q_1(\bar{\mathbf{x}}) = Q_1(\bar{\mathbf{y}}) + 1$, $y_1 + y_2 = x_1 + 1$. Thus, $y_2 = y_4 = 0$.

Now, we will show that $J(\bar{\mathbf{x}}) \leq J(\bar{\mathbf{y}})$. Consider two separate cases:

i) $\max(\min(y_1, y_4), \min(y_2, y_3)) > 0$ and

ii) $\max(\min(y_1, y_4), \min(y_2, y_3)) = 0$.

Consider case i). Let

$\max(\min(x_1, x_4), \min(x_2, x_3)) = 0$.

From (74), either $x_1 = x_3 = 0$ or $x_2 = x_4 = 0$. From (76) and (77). In both cases

$$\max(\min(y_1, y_4), \min(y_2, y_3)) = 0.$$

This is not possible in case i). Thus,

$$\max(\min(x_1, x_4), \min(x_2, x_3)) > 0.$$

Since

$$\max(\min(x_1, x_4), \min(x_2, x_3)) > 0$$

and

$$\max(\min(y_1, y_4), \min(y_2, y_3)) > 0$$

from (73), we have (83) and (84) at the bottom of the page. Now, \forall $i \in \{1, 2\}$

$$D_i(\bar{\mathbf{x}} - e_1 - e_4) = D_i(\bar{\mathbf{x}} - e_2 - e_3) = D_i(\bar{\mathbf{x}}).$$

Also, \forall $i \in \{1, 2\}$,

$$Q_i(\bar{\mathbf{x}} - e_1 - e_4) = Q_i(\bar{\mathbf{x}} - e_2 - e_3) = Q_i(\bar{\mathbf{x}}) - 1,$$

$$Q_i(\bar{\mathbf{y}} - e_1 - e_4) = Q_i(\bar{\mathbf{y}} - e_2 - e_3) = Q_i(\bar{\mathbf{y}}) - 1.$$

Thus, $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ satisfy the conditions of part 1) of the lemma for any

$$\bar{\mathbf{u}} \in \{\bar{\mathbf{x}} - e_1 - e_4, \bar{\mathbf{x}} - e_2 - e_3\}$$

and

$$\bar{\mathbf{u}} \in \{\bar{\mathbf{y}} - e_1 - e_4, \bar{\mathbf{y}} - e_2 - e_3\}.$$

By hypothesis

$$J(\bar{\mathbf{u}}) \leq J(\bar{\mathbf{v}}), \quad \forall \bar{\mathbf{u}} \in \{\bar{\mathbf{x}} - e_1 - e_4, \bar{\mathbf{x}} - e_2 - e_3\}$$

$$\bar{\mathbf{v}} \in \{\bar{\mathbf{y}} - e_1 - e_4, \bar{\mathbf{y}} - e_2 - e_3\}. \tag{85}$$

All of the states $\bar{\mathbf{x}} - e_1 - e_4, \bar{\mathbf{x}} - e_2 - e_3, \bar{\mathbf{y}} - e_1 - e_4, \bar{\mathbf{y}} - e_2 - e_3$ need not be feasible. The inequality applies only to the feasible states. From (83)–(85)

$$\phi(\bar{\mathbf{x}}) \leq \phi(\bar{\mathbf{y}}).$$

Now let $\max(\min(y_1, y_4), \min(y_2, y_3)) = 0$ (case ii). Let

$$\bar{x}_1 = ((x_1 - 1)^+, x_2, x_3, (x_4 - 1)^+)$$

$$\bar{x}_2 = (x_1, (x_2 - 1)^+, (x_3 - 1)^+, x_4)$$

and

$$\bar{y}_1 = ((y_1 - 1)^+, y_2, y_3, (y_4 - 1)^+)$$

$$\bar{y}_2 = (y_1, (y_2 - 1)^+, (y_3 - 1)^+, y_4).$$

From (22)

$$\phi(\bar{\mathbf{x}}) = \beta \min(J(\bar{x}_1), J(\bar{x}_2)) \tag{86}$$

$$\phi(\bar{\mathbf{y}}) = \{\beta J(\bar{\mathbf{x}} - e_1 - e_4) \quad \text{and } \bar{\mathbf{x}} - e_1 - e_4 \text{ is feasible if } \min(x_1, x_4) > 0 \}$$

and

$$\phi(\bar{\mathbf{y}}) = \{\beta J(\bar{\mathbf{y}} - e_2 - e_3) \quad \text{and } \bar{\mathbf{y}} - e_2 - e_3 \text{ is feasible otherwise} \}.$$
\[\phi(\mathcal{F}) = \beta \min \left(J(y1), J(y2) \right). \quad (87) \]

We now show the following:
\[J(y1) \geq \min \left(J(x1), J(x2) \right), \quad \text{if } y1 \neq y, \quad (88) \]
\[J(y2) \geq \min \left(J(x1), J(x2) \right), \quad \text{if } y2 \neq y. \quad (89) \]

From Lemma 2
\[J(yk) \geq K(yk), \quad k = 1, 2. \quad (90) \]

Since \(Q1(y) > Q1(\mathcal{F}) > 0, yk > 0 \) for some \(i \in \{1, 2\} \). Thus, either \(y1 \neq y \) or \(y2 \neq y \). Thus,
\[\phi(\mathcal{F}) \leq \phi(y) \quad \text{(from (86)–(90))}. \]

First we show (88). Let \(y1 \neq y \). Thus, \(y1 > 0 \) or \(y2 > 0 \). Let \(y1 > 0 \). Then, \(y4 = 0 \), since \(\max \{\min(y1, y4), \min(y2, yk)\} = 0 \). Thus,
\[y1 = (y1 - 1, y2, y3, y4). \quad (91) \]

Let \(x3 > 0 \). Now
\[D1(x - e1) = D1(x) \quad \text{and} \quad D2(x - e3) = D2(x) + 1 \]
\[D1(y1) = D1(y) - 1 \quad \text{and} \quad D2(y1) = D2(y). \]

Thus, from (75)
\[D1(y1) = D1(x - e1), \quad i = 1, 2 \]
\[Q1(x - e1) = Q1(x) \quad \text{and} \quad Q2(x - e3) = Q2(x) - 1 \]
\[Q1(y1) = Q1(y) - 1 \quad \text{and} \quad Q2(y1) = Q2(y). \]

Thus,
\[Q2(y1) = Q2(x - e3), \quad i = 1, 2. \]

Thus,
\[J(y1) = J(x - e1) \quad \text{(from part 1 of Lemma 4)} \]
\[\geq J(x2) \quad \text{(from Lemma 2)}. \quad (92) \]

Now, (88) follows from (92).

Now, let \(x3 = 0 \). From (74), \(x4 > 0 \). From (76), if \(x1 = x3 = 0 \), then \(y1 = 0 \). Since \(x3 = 0 \) and \(y1 > 0 \), it follows that \(x1 > 0 \). Thus, \(x1 = (x1 - 1, x2, x3, x4 - 1) \). From (82) and since \(x3 = 0 \), \(y2 > 0 \). Thus, the state \(y - e1 - e2 \) is feasible (\(y1 > 0 \) by assumption).

\[D1(y1) = D1(x - e1) \quad \text{and} \quad D1(y1) - 1 \]
\[D1(x1) = D1(x), \quad i = 1, 2. \]

Thus,
\[D1(y1 - e1 - e2) = D1(x1), \quad i = 1, 2 \quad \text{(from (75)).} \]

Also,
\[Q1(x1) = Q1(x) - 1, \quad i = 1, 2 \]
\[Q2(x1 - e1 - e2) = Q2(y1) - 2 \]
\[Q2(y1 - e1 - e2) = Q2(y). \]

Thus,
\[Q2(y1 - e1 - e2) = Q2(x1), \quad i = 1, 2. \]

Thus,
\[J(x1) = J(x - e1 - e2) \quad \text{(from part 1 of Lemma 4)} \]
\[\leq J(y1) \quad \text{(from Lemma 2 and (91))}. \quad (93) \]

Now (88) follows from (93).

Let \(y1 = 0 \). Thus, \(y4 > 0 \). Thus, \(y1 = (y1, y2, y3, y4 - 1) \).

We will show that \(x4 > 0 \). Let \(x4 = 0 \). From (81), \(y1 > 0 \), which is not possible. Thus, \(x4 > 0 \). Thus, \(x - e1 \) is feasible.

Now
\[D1(x - e1) = D1(x) + 1 \quad \text{and} \quad D2(x - e1) = D2(x) \]
\[D1(y1) = D1(y) + 1 \quad \text{and} \quad D2(y1) = D2(y). \]

Thus, from (75)
\[D1(x - e1) = D1(y1) - 1, \quad i = 1, 2. \]

Also,
\[Q1(x - e1) = Q1(x) \quad \text{and} \quad Q2(x - e1) = Q2(x) - 1 \]
\[Q1(y1) = Q1(y) \quad \text{and} \quad Q2(y1) = Q2(y). \]

Thus,
\[Q2(y1) = Q2(x - e1) + 1 \quad \text{and} \quad Q2(y1) = Q2(x - e1) - 1. \]

Also, since \(Q1(x - e1) \geq Q2(x) \)
\[Q2(x - e1) > Q2(x - e1). \]

Thus, \(x - e1 \) and \(y1 \) satisfy the conditions of part 1). Thus,
\[J(y1) \geq J(x - e1) \quad \text{(from hypothesis)} \]
\[\geq J(x1) \quad \text{(from Lemma 2)}. \quad (94) \]

Now (88) follows from (94).

Thus, (88) holds in all these cases. The proof for (89) is similar and omitted for brevity [12]. Thus,
\[\phi(x) \leq \phi(y). \quad (95) \]

Now we show that \(\theta_i(x) \leq \theta_i(y) \). First consider \(i = 1 \). Let \(Q1(y) < 0 \). Thus, from (23)
\[\theta_i(x) = \beta J(x + e1) \quad \text{and} \quad \theta_i(y) = \beta J(y + e1). \quad (96) \]

Now,
\[D1(x + e1) = D1(x) + 1, \quad D2(x + e1) = D2(x) \]
\[D1(y + e1) = D1(y) + 1, \quad \text{and} \quad D2(y + e1) = D2(y). \]
From (75)
\[D_i(\bar{x} + e_1) = D_i(\bar{y} + e_1) - 1 \quad i = 1, 2. \]
Now
\[Q_1(\bar{x} + e_1) = Q_1(\bar{y} + e_1) + 1, \quad Q_2(\bar{x} + e_1) = Q_2(\bar{y}) \]
\[Q_1(\bar{y} + e_1) = Q_1(\bar{y}) + 1, \quad \text{and} \quad Q_2(\bar{y} + e_1) = Q_2(\bar{y}). \]
Thus,
\[Q_1(\bar{y} + e_1) = Q_1(\bar{y} + e_1) + 1 \]
\[Q_2(\bar{y} + e_1) = Q_2(\bar{y} + e_1) - 1 \]
\[Q_1(\bar{x} + e_1) > Q_2(\bar{x} + e_1) \quad (\text{since} \ Q_1(\bar{x}) \geq Q_2(\bar{x})}. \]
Thus, \(\bar{x} + e_1 \) and \(\bar{y} + e_1 \) satisfy conditions of part 1). Now, from hypothesis,
\[J(\bar{y} + e_1) \geq J(\bar{x} + e_1). \]
Thus, from (96)
\[\theta_1(\bar{x}) \leq \theta_1(\bar{y}). \]
Now let \(Q_2(\bar{y}) = B \). Thus, \(Q_2(\bar{x}) \leq Q_1(\bar{x}) = B - 1 \). Thus,
\[\theta_1(\bar{x}) = \beta J(\bar{x} + e_1) \quad \text{(from (23))} \]
(97)
\[\theta_1(\bar{y}) = 1 + \beta \min (J(\bar{y}), J(\bar{y} + e_1 - e_2)), \quad \text{if} \ y_2 > 0 \]
(98)
\[\theta_1(\bar{y}) = 1 + \beta J(\bar{y}), \quad \text{if} \ y_2 = 0 \quad \text{(from (25))} \]
(99)
\[J(\bar{x} + e_1) \leq 1 + J(\bar{y}) \quad \text{(from hypothesis)} \]
(100)
From (97), (99), and (100), and since \(\beta < 1 \), \(\theta_1(\bar{x}) \leq \theta_1(\bar{y}) \) if \(y_2 = 0 \). Let \(y_2 > 0 \). Let \(x_2 > 0 \). Thus, \(\bar{x} + e_1 - e_2 \) is feasible. Then
\[D_1(\bar{x} + e_1 - e_2) = D_1(\bar{x}) + 1 \]
\[D_2(\bar{x} + e_1 - e_2) = D_2(\bar{x}) - 1 \]
\[D_1(\bar{y} + e_1 - e_2) = D_1(\bar{y}) + 1 \]
\[D_2(\bar{y} + e_1 - e_2) = D_2(\bar{y}) - 1. \]
From (75)
\[D_1(\bar{x} + e_1 - e_2) = D_1(\bar{y} + e_1 - e_2) - 1, \quad i = 1, 2. \]
Now
\[Q_2(\bar{y} + e_1 - e_2) = Q_2(\bar{y}), \quad i = 1, 2 \]
\[Q_2(\bar{y} + e_1 - e_2) = Q_2(\bar{y}), \quad i = 1, 2 \]
\[Q_2(\bar{y} + e_1 - e_2) = Q_2(\bar{y} + e_1 - e_2) + 1 \]
\[Q_2(\bar{y} + e_1 - e_2) = Q_2(\bar{y} + e_1 - e_2) - 1 \]
\[Q_1(\bar{x} + e_1 - e_2) \geq Q_2(\bar{x} + e_1 - e_2) \]
Thus, \(\bar{x} + e_1 - e_2 \) and \(\bar{y} + e_1 - e_2 \) satisfy the conditions of part 1)
\[J(\bar{x} + e_1) \leq 1 + J(\bar{x} + e_1 - e_2) \quad \text{(from Lemma 2)} \]
\[\leq 1 + J(\bar{y} + e_1 - e_2) \quad \text{(from hypothesis)} \]
(101)
From (97), (98), (100), and (101) and since \(\beta < 1 \), \(\theta_1(\bar{x}) \leq \theta_1(\bar{y}) \) if \(y_2 > 0 \). \(x_2 > 0 \).
Now, $Q_1(\bar{x}) = Q_2(\bar{x}) + 1$. Since $Q_2(\bar{x}) = Q_1(\bar{x}) + 1$, and $Q_2(\bar{y}) = Q_2(\bar{x})$. Thus, $Q_1(\bar{y}) = Q_1(\bar{x})$, and $Q_2(\bar{y}) = Q_2(\bar{x}) + 1$. Recall that $Q_1(\bar{y} + \epsilon_3^i) = Q_1(\bar{x})$ and $Q_2(\bar{y} + \epsilon_3^i) = Q_2(\bar{x})$. Thus,

$$Q_i(\bar{y} + \epsilon_3^i) = Q_i(\bar{x}), \quad i = 1, 2,$$

$$J(\bar{y} + \epsilon_3^i) = J(\bar{x}) = J(\bar{x} + \epsilon_3^i)$$

(from part 1) of Lemma 4)

From (103), $\theta_3(\bar{x}) \leq \theta_3(\bar{y})$. Thus, $\theta_3(\bar{x}) \leq \theta_3(\bar{y})$, in all cases. We can similarly prove that $\theta_4(\bar{x}) \leq \theta_4(\bar{y})$. Thus,

$$\theta_i(\bar{x}) \leq \theta_i(\bar{y}), \quad \forall i.$$

(104)

The lemma follows from (95) and (104).

REFERENCES

