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Figure 4: (a) Distribution of pupil centers, (b) 3-D view of same
distribution
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Figure 5: (a) Frequency of occurrence of saccade magnitudes, (b)
Cumulative percentage of magnitudes

puted by

q ≈ arctan(d/r) = arctan(

p
(xe−xs)2 +(ye−ys)2

r
), (2)

whered is the Euclidean distance traversed by the pupil center and
r is the radius of the eyeball. The radiusr is assumed to be one half
of xmax, the width of the eye-tracker image (640 pixels).

The frequency of occurrence of a given saccade magnitude dur-
ing the entire recording session is shown in Figure 5(a). Using a
least mean squares criterion the distribution was fitted to the expo-
nential function

P = 15.7e−
A

6.9 , (3)

whereP is the percent chance to occur andA is the saccade magni-
tude in degrees. The fitted function is used for choosing a saccade
magnitude during synthesis.

Figure 5 (b) shows the cumulative percentage of saccade magni-
tudes, i.e. the probability that a given saccade will be smaller than
magnitude x. Note that 90% of the time the saccade angles are less
than 15 degrees, which is consistent with a previous study [Bahill
et al. 1975].

Saccade directions are also obtained from the video. For sim-
plicity, the directions are quantized into 8 evenly spaced bins with
centers 45 degrees apart. The distribution of saccade directions is
shown in Table 1. One interesting observation is that up-down and
left-right movements happened more than twice as often as diago-
nal movements. Also, Up-down movements happened equally as
often as left-right movements.

Saccade duration was measured using a velocity threshold of
40 deg/sec(1.33 deg/ f rame). The durations were then used to
derive an instantaneous velocity curve for every saccade in the eye-
track record. Sample curves are shown in Figure 6 (black dot-
ted lines). The duration of each eye movement is normalized to

Direction 0 deg 45 deg 90 deg 135 deg
Percent(%) 15.54 6.46 17.69 7.44
Direction 180 deg 225 deg 270 deg 315 deg
Percent(%) 16.80 7.89 20.38 7.79

Table 1: Distribution of saccade directions

6 frames. The normalized curves are used to fit a 6-dimensional
polynomial (red solid line),

Y = 0.13X6−3.16X5 +31.5X4−155.87X3 +
394X2−465.95X +200.36, (4)

where X is frame 1 to 6 andY is instantaneous velocity
(degrees/ f rame).

Figure 6: Instantaneous velocity functions of saccades

The inter-saccadic interval is incorporated by defining two
classes of gaze,mutualandaway. Mutual gaze indicates that the
subject’s eye is in the primary position, while gaze away indicates
that it is not. The duration that the subject remains in one of these
two gaze states is analogous to the inter-saccadic interval. Fig-
ures 7(a) and 7(b) plot duration distributions for the two types of
gaze while the subject was talking. They show the percent chance
of remaining in a particular gaze mode (i.e., not making a saccade)
as a function of elapsed time. The polynomial fitting function for
mutual gaze duration is

Y = 0.0003X2−0.18X +32, (5)

and for gaze away duration is

Y = −0.0034X3 +0.23X2−6.7X +79 (6)

Note that the inter-saccadic interval tends to be much shorter when
the eyes are not in the primary position.

4.3 Talking mode vs. Listening mode

It can be observed that the characteristics of gaze differ depend-
ing on whether a subject is talking or listening [Argyle and Cook
1976]. In order to model the statistical properties of saccades in
talking and listening modes, the modes are used as a basis to fur-
ther segment and classify the eye movement data. The segmentation
and classification were performed by a human operator inspecting
the original eye-tracking video.

Figures 8 (a) and (b) show the eye position distributions for talk-
ing mode and listening mode, respectively. In talking mode, 92%
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Figure 7: (a) Frequency of mutual gaze duration while talking, (b)
Frequency of gaze away duration while talking
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Figure 8: Distribution of saccadic eye movements (a) in talking
mode, (b) in listening mode

of the time saccade magnitude is 25 degrees or less. In listening
mode, over 98% of the time the magnitude is less than 25 degrees.
The average magnitude is 15.64± 11.86 degrees (mean± stdev)
for talking mode and 13.83±8.88 degrees for listening mode. In
general the magnitude distribution of listening mode is much nar-
rower than that of talking mode, indicating that when the subject is
speaking eye movements are more dynamic and active. This is also
apparent while watching the eye-tracking video.

Inter-saccadic intervals also differ between talking and listening
modes. In talking mode, the average mutual gaze and gaze away du-
rations are 93.9±94.9 frames and 27.8±24.0 frames, respectively.
The complete distributions are shown in figures 7(a) and 7(b). In
listening mode, the average durations are 237.5±47.1 frames for
mutual gaze and 13.0± 7.1 frames for gaze away. These distri-
butions were far more symmetric and could be suitably described
with Gaussian functions. The longer mutual gaze times for listen-
ing mode are consistent with earlier empirical results [Argyle and
Cook 1976] in which the speaker was looking at the listener 41% of
the time, while the listener was looking at the speaker 75% of the
time.

5 Synthesis of natural eye movement

A detailed block diagram of the statistical eye movement synthesis
model is illustrated in Figure 9. The key components of the model
are (1)Attention Monitor (AttMon) , (2) Parameter Generator
(ParGen), and (3)Saccade Synthesizer (SacSyn).

AttMon monitors the system state and other necessary informa-
tion, such as whether it is in talking or listening mode, whether the
direction of the head rotation has changed, or whether the current
frame has reached the mutual gaze duration or gaze away duration.
By default, the synthesis state starts from themutual gaze state.

Figure 9: Block diagram of the statistical eye movement model

The agent mode (talking or listening mode) can be provided by a
human operator using linguistic information. The head rotation is
monitored by the following procedure:

1: Initialize start and duration indexfor head rotation
2: for each frame
3: Determine direction and amplitude of head rotation

for current frame by comparing with head rotation
FAP values of current frame and previous frame

4: if direction has been changed in this frame
5: Calculate head rotation duration by searching

backwards until reaching starting indexvalue
6: Set starting indexto the current frame number
7: Set duration indexto 0

else
8 Increment duration index
9: end

If the direction of head rotation has changed and its amplitude is
bigger than an empirically chosen threshold then it invokesParGen
to initiate eye movement. Also, if the timer for either mutual gaze
or gaze away duration is expired, it invokesParGen.

ParGen determines saccade magnitude, direction, duration and
instantaneous velocity. It also decides the gaze away duration or
mutual gaze duration depending on the current state. Then, it in-
vokes theSacSyn, where appropriate saccade movement is synthe-
sized and coded into the FAP values.

Saccade magnitude is determined using the inverse of the ex-
ponential fitting function shown in Figure 5(a). First, a random
number between 0 and 15 is generated. The random number corre-
sponds to the y-axis (percentage of frequency) in Figure 5(a). Then,
the magnitude can be obtained from the inverse function of Equa-
tion 3,

A = −6.9∗ log(P/15.7) (7)

whereA is saccade magnitude in degrees andP is the random num-
ber generated, i.e., the percentage of occurrence. This inverse map-
ping using a random number guarantees the saccade magnitude has
the same probability distribution as shown in Figure 5(a). Based
on the analysis result in section 4.3, the maximum saccade mag-
nitude is limited to 27.5 degrees for talking mode and 22.7 degrees



for listening mode.3

Saccade direction is determined by two criteria. If the head rota-
tion is larger than a threshold, the saccade direction follows the head
rotation. Otherwise, the direction is determined based on the dis-
tribution shown in Table 1. A uniformly distributed random num-
ber between 0 to 100 is generated and 8 non-uniform intervals are
assigned to the respective directions. That is, a random number be-
tween 0 to 15.54 is assigned to the direction 0 deg (right), a number
between 15.54 to 22.00 to the direction 45 deg (up-right), and so
on. Thus 15.54% of the time a pure rightward saccade will occur,
and 6.46% of the time a up-rightward saccade will be generated.

Given a saccade magnitudeA, the duration is calculated using
Equation 1 with valuesd = 2.4 msec/degandD0 = 25msec. The
velocity of the saccade is then determined using the fitted instanta-
neous velocity curve (Equation 4.) Given the saccade durationD
in frames, the instantaneous velocity model is resampled atD times
the original sample rate (1/6). The resulting velocity follows the
shape of the fitted curve with the desired durationD.

In talking mode, the mutual gaze duration and gaze away dura-
tion are determined similarly to the other parameters, using inverses
of the polynomial fitting functions (equations 5 and 6). Using the
random numbers generated for the percentage range, correspond-
ing durations are calculated by root solving the fitting functions.
The resulting durations have the same probability distributions. In
listening mode, inter-saccadic intervals are obtained using Gaus-
sian random numbers with the duration values given in section 4.3:
237.5±47.1 frames for mutual gaze and 13.0±7.1 frames for gaze
away.

TheSacSyncollects all synthesis parameters obtained above and
calculates the sequence of the coordinates of the eye centers. The
coordinate values for eye movements are then translated into the
FAP values for the MPEG4 standard [N3055 1999; N3056 1999].
For facial animation, we merge the eye movement FAP values with
the parameters for lip movement, head movement, and eye blinking
provided by the alterEGO system. Each frame is rendered in the 3D
StudioMax environment. After synthesizing a saccade movement,
theSacSynsets the synthesis state to eithergaze away stateor mu-
tual gaze state. Again, theAttMon checks the head movement,
internal mode of the agent, and the timer for gaze away duration.
When a new eye movement has to be synthesized, theParGen is
invoked in order to determine the next target position. Depending
on the next target position, the state either stays at thegaze away
stateor goes back to themutual gaze state.

We generate facial animation using the face2face Animation
Plug-In by applying FAP values to the face model in 3D StudioMax.
We added the eye animation capability to the Plug-In. In addition to
applying the saccade data from the FAP file, our modified plug-in
incorporates the vestibulo-ocular reflex (VOR). The VOR stabilizes
gaze during head movements (as long as they are not gaze saccades)
by causing the eyes to counter-roll in the opposite direction [Leigh
and Zee 1991].

6 Results

In order to compare the proposed saccade model to simpler tech-
niques, we synthesized eye movements on our face model using
three different methods. In the first (Type I), the subject does not
have any saccadic movements. The eyeballs remain fixated on the
camera. In the second (Type II), the eye movement is random. The
saccade magnitude, direction and inter-saccadic interval are chosen
by random number generators. In the third (Type III), the eye move-
ments are sampled from our estimated distributions. The statisti-
cal model reflects the dynamic characteristics of natural eye move-

3The maximum magnitude thresholds are determined by the average
magnitude plus one standard deviation for each mode.

Questions p-values
Type I vs. Type III Type II vs. Type III

Overall 0.0000 0.0000
Q1 0.1321 0.0588
Q2 0.1127 0.0006
Q3 0.0037 0.0029
Q4 0.0000 0.1310

Table 2: Results of Newman-Keuls test

ments. Also, the model eye movements are synchronized with head
movements and speech acts. Figure 1 shows several samples of the
output images.

We conducted a subjective test to evaluate the three types of eye
movement. The three characters (Type I, II, III) were presented in
random order to 12 subjects. The subjects were asked the following
questions:

• Q1: Did the character on the screen appear interested in (5) or
indifferent (1) to you?

• Q2: Did the character appear engaged (5) or distracted (1)
during the conversation?

• Q3: Did the personality of the character look friendly (5) or
not (1)?

• Q4: Did the face of the character look lively (5) or deadpan
(1)?

• Q5: In general, how would you describe the character?

Note that higher scores correspond to more positive attributes in a
conversational partner. Most of the subjects were naive in the sense
that they were not familiar with computer graphics or neurobiology,
and none of the subjects were authors of the study. For questions 1
to 4, the score was graded on a scale of 5 to 1.

Figure 10: Results of subjective evaluations. Average score and
standard deviation

Figure 10 summarizes the average score and standard devia-
tion for the first four questions. The scores were analyzed using
the STATISTICATM software package (StatSoft, Inc.). A Kruskal-
Wallis ANOVA indicated that the three character types had signif-
icantly different scores (p = 0.0000). To further quantify the dif-
ferences between the characters, a standard 2-way ANOVA and



Newman-Keuls post-hoc test were performed (Table 2). The in-
teractions between the three models and four questions were tested
while the subjects were pooled. Overall, the scores for type III char-
acters were significantly higher than either type I or type II charac-
ters, while type I and II characters scored the same (not shown in
table; p = 0.7178). The results for individual questions agree well
with intuition. Type I characters (staring eyes) were not rated as sig-
nificantly less interested in (Q1) or engaged with (Q2) the subjects
than type III characters (normal eyes). Type II characters (erratic
eyes) were not significantly less lively (Q4) than type III charac-
ters. They were also not significanly less interested than type III
characters, though only marginally. In all other cases type III char-
acters scored significantly higher than the others.

According to the general remarks in Q5, the subjects tended to
believe the following:

1. Type I looked interested in the viewers, but it seemed to have
a cautious, demanding, sleepy-looking (not lively) and cold
personality.

2. Type II’s eye movement was unnatural, jittery and distracted,
but more lively and friendly. No head-eye synchronization
was jarring. Resulting in a character who looked unstable and
schizophrenic.

3. Type III had better eye movement, which was purposeful, nat-
ural and realistic. The character looked more friendly and out-
going.

[Argyle and Dean 1965] found that very high amounts of eye
contact (i.e. direct gaze)may be perceived as too intimate for that
particular encounter and hence may be less favorably rated. Our
findings using characters with no saccadic eye movement are con-
sistent with those conclusions. In summary, 10 out of 12 subjects
chose Type III as the most natural, while two subjects had no pref-
erence.

7 Conclusions

In this paper, we presented eye saccade models based on the sta-
tistical analysis of eye-tracking video. The eye-tracking video is
segmented and classified into two modes: talking mode and lis-
tening mode. A saccade model is constructed for each of the two
modes. The models reflect the dynamic characteristics of natural
eye movement, which include saccade magnitude, duration, veloc-
ity, and inter-saccadic interval.

We synthesized a face character using 3 different types of eye
movements: stationary, random, and model-based. We conducted
a subjective test using these movements. The test results show that
the model generated eyeball movement that made the face character
look more natural, friendly and outgoing. No eye movement gave
the character a lifeless quality, while random eye movement gave
the character an unstable quality.

Another way to generate eye movements on a face model is to
replay the eye tracking data previously recorded from a subject.
Preliminary tests using this method indicated that the replayed eye
movements looked natural by themselves, but were often not syn-
chronized with speech or head movement. An additional drawback
to this method is that it requires new data to be collected every time
a novel eye-track record is desired. Once the distributions for the
statistical model are derived, any number of unique eye movement
sequences can be animated.

The eye movement video used to construct the saccade statistics
was limited to a frame rate of 30Hz, which can lead to aliasing.
In practice this is not a significant problem, best illustrated by an
example. Consider a small saccade of 2degrees, which will have
a duration of around 30msec(Equation 1). To completely lose all

information on the dynamics of this saccade, it must begin within
threemsecof the first frame capture, so that it is completely finished
by the second frame capture 33mseclater. This can be expected to
happen around 10 % of the time (3 / 33). From Figure 5 (b), it
can be seen that saccades this small comprise about 20 % of all
saccades in the record, so only around 2 % of all saccades should
be severely aliased. This small percentage has little effect on the
instantaneous velocity function of Figure 6. Since saccade starting
and ending positions are still recoverable from the video, magnitude
and direction are much less susceptible to aliasing problems.

A more important consideration is the handling of the VOR dur-
ing the eye movement recording. A change in eye position that is
due to a saccade (e.g., up and to the left) must be distinguishable
from a change that is due to head rotation (e.g., down and to the
right). One solution is to include a sensor which monitors head
position. When head position is added to eye position, the resul-
tant gaze position is without the effects of the VOR. However, this
introduces the new problem that eye and head movements are no
longer independent. An alternate approach is to differentiate the
eye position data, and threshold the resultant eye velocity (e.g, at
80 deg/sec) to screen out non-saccadic movements. Although this
can be performed post-hoc, it is not robust at low sampling rates.
For example, revisiting the above example, a 2degreeposition
change that occurred between two frames may have taken 33msec
(velocity = 60deg/sec) or 3msec(velocity = 670deg/sec). In this
study, head movements in subjects occurred infrequently enough
that they were unlikely to severely contaminate the saccade data.
However, in future work they can be better accounted for, using
improved equipment, more elaborate analysis routines, or a combi-
nation of the two.

There are a number of enhancements to our system which
could be implemented in the future. During the analysis of
eye-tracking images, we noticed a high correlation between the
eyes and the eyelid movement which could be incorporated. Only
the cognitive states of talking and listening were considered. The
number of states could be expanded to model gaze patterns during
other phases of speech, such as the tendency to look away at the
beginning of an utterance, look toward the listener at the end, or
to look up when thinking of what to say next. A scan-path model
could be added, using not only the tracking of close-up eye images
but also the visual environment images taken from the perspective
of the participant’s eye. Additional subjects could be added to the
pool of saccade data, reducing the likelihood of idiosyncracies
in the statistical model. Other modeling procedures themselves
could be investigated, such as neural networks or Markov models.
Improvements such as these will further increase the realism of a
conversational agent.
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