Animal Model of Human Disease: Mucopolysaccharidosis Type VII (Sly Syndrome). Beta-Glucuronidase-Deficient Mucopolysaccharidosis in the Dog

Mark E. Haskins
University of Pennsylvania, mhaskins@vet.upenn.edu

Gustavo D. Aguirre
University of Pennsylvania

Peter F. Jezyk

Edward H. Schuchman

Robert J. Desnick

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/vet_papers

🔗 Part of the Comparative and Laboratory Animal Medicine Commons, and the Diseases Commons

Recommended Citation

PMCID: PMC1886403

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/vet_papers/23
For more information, please contact repository@pobox.upenn.edu.
Animal Model of Human Disease: Mucopolysaccharidosis Type VII (Sly Syndrome). Beta-Glucuronidase-Deficient Mucopolysaccharidosis in the Dog

Disciplines
Comparative and Laboratory Animal Medicine | Diseases | Medicine and Health Sciences | Veterinary Medicine

Comments
PMCID: PMC1886403

Author(s)
Mark E. Haskins, Gustavo D. Aguirre, Peter F. Jezyk, Edward H. Schuchman, Robert J. Desnick, and Donald F. Patterson
Animal Model of Human Disease

Mucopolysaccharidosis Type VII (Sly Syndrome)

Beta-glucuronidase-Deficient Mucopolysaccharidosis in the Dog

Mark E. Haskins,*† Gustavo D. Aguirre,† Peter F. Jezyk,† Edward H. Schuchman,‡ Robert J. Desnick,† and Donald F. Patterson†
From the Laboratory of Pathology* and Section of Medical Genetics† School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and the Division of Medical and Molecular Genetics‡ Mount Sinai School of Medicine, New York, New York

Biologic Features

Mucopolysaccharidosis (MPS) type VII (Sly syndrome) was first described in a mixed-breed dog in 1984.¹ Since then, an additional 19 affected dogs have been studied in the animal colony established at the University of Pennsylvania, School of Veterinary Medicine. All of the affected dogs were descendants of a single carrier female and were, therefore, homozygous for a single mutation in the β-glucuronidase gene. Typical features of the syndrome that were evident in affected dogs by 4 weeks of age included a shortened broad face, low-set ears, and a laterally broad chest. Diffuse corneal clouding was evident by 8 weeks of age. By 9 weeks of age, affected animals were approximately 50% smaller than littermates and had a disproportionately large head. Polymorphonuclear leukocytes and lymphocytes in peripheral blood smears contained coarse cytoplasmic granules (Alder-Reilly bodies) that stained metachromatically with toluidine blue. Affected animals also had a positive Berry spot test² for excessive urinary glycosaminoglycans (GAGs), which were shown to be chondroitin 4- and 6-sulfates and dermatan sulfate by cellulose acetate electrophoresis.¹ Signs of appendicular skeletal disease were first evident between 2 and 5 months of age, when affected animals could no longer stand, but were able to move in sternal recumbency and eat and drink indepen-
dently. Synovial joint capsules were swollen and fluctuant, with most joints extremely lax, easily subluxated, and crepitant. Radiographic features of the disease included severe, progressive, epiphyseal dysplasia and bilateral hip subluxation to complete luxation. Cardiac abnormalities were variable. Several affected animals had no clinical signs of heart disease by 2 years of age, whereas others had clinical signs of mitral insufficiency or patent ductus arteriosus in the first week of life.

Significant pathologic changes were present in many systems. Hepatomegaly, without splenomegaly, was present. The trachea in all animals was misshapen with variable degrees of narrowing resulting from overlapping tracheal rings. Atrioventricular heart valve leaflets and chordae tendinae were thickened, with the mitral valve being the most affected. The closure of the ductus arteriosus was incomplete, resulting in either a patent ductus arteriosus or a ductus diverticulum. The arch of the aorta was thickened to some degree in all animals. In dogs over 4 months of age, the synovial membranes were hyperplastic, and the articular cartilage and underlying bone of most synovial joints was eroded. Histologically, cytoplasmic vacuoles were present in central nervous system neurons, hepatocytes, Kupffer cells, keratocytes, retinal pigment epithelium, atrioventricular heart valve fibroblasts, aortic smooth muscle cells, leukocytes, chondrocytes, and synovial cells. By electron microscopy, the cytoplasmic inclusions were membrane bound (Figures

¹ Publication sponsored by the Registry of Comparative Pathology, Armed Forces Institute of Pathology and supported by Grant RR-00301 from the Division of Research Resources, NIH, under the auspices of Universities Associated for Research and Education in Pathology, Inc., and by Hazelton Laboratories, America, Inc.
² Supported by NIH grants DK-25759, RR 02512, and EY 7705, the Mrs. Cheever Porter Foundation, and Lucille P. Markey Charitable Trust.
³ Address reprint requests to Mark Haskins VMD, PhD, Pathology and Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104-6051.
1 and 2) and were empty or contained granular or lamellar material.

Activity of β-glucuronidase in peripheral blood leukocytes and 10 other tissues ranged from 0.2% to 1.7% that of normal canine values. Canine MPS VII sera had about 6.4% of normal β-glucuronidase activity and was used to diagnose affected animals less than 3 weeks of age. Obligate heterozygotes for the disease had enzyme activities approximately 50% of normal.

Pedigree information (Figure 3) and enzyme activity of sera from family members were consistent with autosomal recessive inheritance. Male dogs of reproductive age were fertile by artificial insemination. Two female dogs were not observed to have estrus cycles by 24 months of age.

Comparison with Human Mucopolysaccharidosis VII

The clinical phenotype of MPS VII in man is variable. Patients range from those with severe mental retardation, skeletal abnormalities, corneal clouding, and hepatosplenomegaly to those with normal intelligence and stature, and little or no corneal clouding or skeletal abnormality. All human patients have had leukocyte inclusions and excreted excessive amounts of GAGs in their urine. The clinical phenotype in the dog most closely resembles the more severely affected human patients. Pathologic lesions of MPS VII in the dog and man are similar. In both species there is storage of incompletely degraded GAGs within membrane-bound cytoplasmic inclusions. The distribution of lesions in the dog also closely parallel those of the human mucopolysaccharidoses in general, and MPS VII in particular, affecting the skeletal, cardiac, ocular, and central nervous systems. This naturally occurring animal homolog is proving useful in studies of the pathogenesis and approaches to therapy for lysosomal storage diseases.

Availability of the Model

The colony of dogs is available for collaborative research. When the number of dogs with MPS VII exceeds the re-
search needs of the authors, animals will be made available to others with an interest in using this animal model.

Acknowledgments

The authors thank Cathy Just and the cadre of veterinary work-study students who have cared for the colony of dogs with mucopolysaccharidosis VII, Jamie Hayden for electron microscopy and photography, and Dr. Jeff Wortman for radiographic interpretations.

References

