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Abstract 
 
Simpson’s paradox refers to the reversal of a statistical relationship between two 

variables in sub-populations when the sub-populations are combined and analyzed as a 

population. This article is intended to provide a broad survey of the past, present and 

future research surrounding the issue. Real data from a discrimination litigation case is 

examined to identify the occurrence of the paradox. 

Section 1 

Introduction  

Simpson’s Paradox was first discovered by Karl Pearson in 1899. The paradox 

derives its name from “The Interpretation of Interaction in Contingency Tables” [1]. 

Simpson’s Paradox refers to the reversal of a statistical relationship between two 

variables in sub-populations when the sub-populations are aggregated and analyzed as a 

population. Alternatively, Simpson’s Paradox can be thought of as the reversal of a 

statistical relationship between two variables when additional factors are added in the 

analysis.  

Blyth states Simpson’s Reversal Paradox as follows [2].  

It is possible to have: 

P(A | B) > P(A | B’)   

and have at the same time both:       (1) 

P(A | B and C)  � P(A | B’ and C) 

P(A | B and C’) < P(A | B’ and C’), 

where P(A | B) is the probability of event A conditional on event B and the prime 

indicates complements 



First consider a fictitious example from [2] that illustrates the paradox: 

A doctor in California conducted a new treatment on patients in two different cities, 

California (C) and Seattle (C’). As each patient from California became available, he 

assigned him to the new treatment with probability 0.91, leaving him to the standard 

treatment with probability 0.09. In the same way, he assigned each patient in New Jersey 

to the new treatment with probability 0.01, leaving him to the standard treatment with 

probability 0.99. (These probabilities were expected to give him about the number of 

patients he could handle in each city).Observing the survival rate on the patients in both 

cities, the following results were obtained: 

Table 1 
Number of Patients 
 

Treatment Outcome 
Standard New 

Died 5950 (54%) 9005 (89%) 
Survived 5050 (46%) 1095 (11%) 
Total 11000 (100%) 10100 (100%) 
 

Based the results in Table 1, it appears that the new treatment is clearly inferior to 

the standard treatment, since only 11 percent of the patients receiving the new treatment 

survived, compared to 46 percent under the standard treatment. However, when the data 

is disaggregated for the two cities, the opposite conclusion is reached. 

 
Table 2 
Number of Patients 

Patient Type C Patient Type C’ 
Treatment Treatment 

Outcome 

Standard New Standard New 
Died 950 (95%) 9000 (90%) 5000 (50%) 5 (5%) 
Survived 50 (5%) 1000 (10%) 5000 (50%) 95 (95%) 
Total 1000 (100%) 10000 (100%) 10000 (100%) 100 (100%) 
 



From the data in Table 2, patients under the new treatment in California (C)  had a 

survival rate of 10 percent compared to 5 percent for those under the standard treatment, 

while patients under the new treatment in Seattle (C’) had a survival rate of 95 percent 

compared to 50 percent for those under the standard treatment. Thus, it appears that the 

new treatment is a superior treatment to the standard treatment, a conclusion contrary to 

the one derived from examining the aggregated data.  

 

The paradox can be explained once we see what has occurred: the C patients are 

much less likely to recover, and since the new treatment was given mostly to C patients, 

the new treatment showed a low survival rate since it was tried out mostly on the most 

seriously ill patients.  If event A is survival and B is the new treatment, we have 

Simpson’s Paradox as stated in (1): 

P(A | B) = 0.11 < P(A | B’) = 0.46   

P(A | B and C)  = 0.10  > P(A | B’ and C) = 0.05 

P(A | B and C’)  = 0.95 > P(A | B’ and C’) = 0.50 

One tends to reason that this is intuitively impossible because:  

P(A | B) = An equally weighted average of P(A | BC) and P (A | BC’) 

P (A | B’) = An equally weighted average of P(A | B’C) and P (A | B’C’) 

Such an assumption is incorrect because the averages have different weightings given by 

the following equation: 

P(A | B) = P(C | B) � P (A | BC) + P(C’ | B) � P( A | BC’)    (2) 

P(A | B’) = P(C | B’) � P(A | B’C) + P(C’ | B’) � P(A | B’C’) 

In the above example,  



P(C | B) = 100/101 

P(C’ | B) = 1/101 

P(C | B’) = 1/11  

P(C’ | B’) = 10/11 

Thus the surprising fact that an average of 0.10 and 0.95 is so much smaller than 

an average of 0.05 and 0.50 is easily explained by showing according to (2): 

 

0.11 = 100/101 � 0.10 + 1/101 � 0.95 

0.46 = 1/11 � 0.05 + 10/11 � 0.50 

Here the paradox could not happen if B and C were independent, i.e., if the 

proportion receiving the new treatment were the same for C and C’ patients. However, 

here the paradox results due to the dependence or the interaction of B and C. 

A second example is given by Gardner [3] and is shown in the following table: 

Table 3 
 Box 1 Box 2 Box 3 Box 4 Box 1 + 3 Box 2 + 4 
No. of black chips 5 3 6 9 11 12 
No. of white chips 6 4 3 5 9 9 
 

To maximize the likelihood of drawing a black chip, box 1 is preferred over box 2 

(since 5/11 > 3/7) and box 3 is preferred over box 4 (since 6/9 > 9/14). Yet, when the 

contents of box 1 and 3 are combined and the contents of box 2 and box 4 are combined, 

the second combination is preferred over the first one (since 12/21 > 11/20). The paradox 

can be stated in terms of positive numbers. It is possible to have: 
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and at the same time have both:       (3) 



g
e
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a ≤  

 
and:  
 

h
f

d
b ≤  

 
The equivalence of (1) and (3) can be seen by setting: 

a = P(C | B) � P (A | BC) 

b = P(C’ | B) � P( A | BC’) 

c = P(C | B) 

d = P(C’ | B) 

e = P(C | B’) � P(A | B’C) 

f = P(C’ | B’) � P(A | B’C’) 

g = P(C | B’) 

h = P(C’ | B’) 

Section 2 provides four real-life examples where Simpson’s Paradox occurs. The 

examples, which encompass a broad range of fields, provide a motivation for further 

understanding the consequences of bias in sampling associated with the paradox. Section 

3 discusses other literature related to Simpson’s Paradox, including a geometric 

interpretation and alternative data presentation methods. In Section 4, analysis on a real-

life data set from a gender discrimination case is presented in light of the paradox. 

Section 5 discusses Simpson’s Paradox in a broader light as a topic in sampling and 

suggests several avenues for further research. 



Section 2 

Real-life examples of Simpson’s Paradox 

There have been numerous papers written to describe examples of Simpson’s 

paradox, both using fictitious data [2,4,5] as well as real data [6,7,8,9,10,11]. In this 

section, four examples of Simpson’s paradox in real-life are provided to illustrate the 

point that the phenomena occurs across sampling studies in different fields of study. 

Simpson’s Paradox in Jury Selection 

The first example relates to a survey on jury composition in New Zealand by the 

New Zealand Department of Justice in September 1993 [6]. The issue of particular 

interest in the survey was the question of representation of the Maori tribe, the indigenous 

people of New Zealand. The original impetus for the research was a suspicion that Maori 

was under-represented on juries. The Department of Justice surveyed the composition of 

juries and the pool of the jurors the juries were selected from during a period in 

September and October 1993. Looking the results nationally, the report noted that “9.5 

percent of people living within the jury districts were Maori. This compares with 10.1 

percent of Maori in the pool of potential jurors. It is tempting to conclude, therefore, that 

Maori were adequately represented in the jury pool”. Since the draft report gave the 

Maori proportion for each court district, Westbrooke further analyzed the data using 1991 

Census data and found the following results: 



Table 4 

Percentage Maori Ethnic Group 
 
District Eligible Population 

 (aged 20 – 64) 
Jury Pool Shortfall 

Whangarei 17.0 16.8 0.2 
 Auckland   9.2 9.0 0.2 
 Hamilton   13.5 11.5 2.0 
 Rotorua   27.0 23.4 3.6 
 Gisborne   32.2 29.5 2.7 
 Napier   15.5 12.4 3.1 
 New Plymouth   8.9 4.1 4.8 
 Palmerston North   8.9 4.3 4.6 
 Wellington   8.7 7.5 1.2 
 Nelson   3.9 1.7 2.2 
 Christchurch   4.5 3.3 1.2 
 Dunedin   3.3 2.4 0.9 
 Invercargill   8.4 4.8 3.6 
All Districts 9.5 10.1 -0.6 
Source: Unpublished 1991 Census tables, and Trial By Peers 

 

Looking at the disaggregated data, the Maori are under-represented in every 

district. However, when the data is aggregated at the national level, Maori is over-

represented. The paradox arises because the jury pool size in each district is not 

proportional to the population of the cities. Certain districts have a much higher juror 

pool to population ratio than others. It turns out that those districts with a high proportion 

of Maori tend to have relatively large jury pools, and this pulls the proportion of Maori in 

the jury pool for the combined districts above the proportion of Maori in the population. 

Example of Simpson’s Paradox when a Covariate is Ignored 

The second example involves a study on smoking habits and survival rates [7]. 

Between 1972 and 1974 a one-in-six survey of the electoral roll was carried out in 

Whickham, a mixed urban and rural district near Newcastle upon Tyne, United Kingdom 

(Tunbridge et al., 1977). A follow-up study was conducted twenty years later 



(Vanderpump et al. 1995). Appleton examines the study data, restricting the analysis to 

1314 women smokers in the district for simplicity. 

The following study results were obtained: 

Table 5 
Relationship Between Smoking Habits and 20-Year Survival in 1314 Women 
  
 Smoker 
 Yes No Total 
Dead 139  230  369 
Alive 443  502   945 
 582 732 1314 
Survival Rate 76.1% 68.6%  
 

The results imply a significant protective effect of smoking because the survival 

rate for smokers is higher (76 percent) than the survival rate of non-smokers (69 percent). 

The explanation for this baffling result is provided when an extra variable, age, which is 

strongly related to survival, is added to the analysis. Table 6 shows the effect of adding 

the variable to the analysis: 

Table 6 
Numbers of Women Smokers and Nonsmokers in Different Age Groups, Showing their 
20-year Survival Status 
 
Age 18 – 24 25 – 34 35 – 44 45 – 54 55 – 64 65 – 74 75+ 
Smoker? + - + - + - + - + - + - + - 
Dead 2 1 3 5 14 7 27 12 51 40 29 101 13 64 
Alive 53 61 121 152 95 114 103 66 64 81 7 28 0 0 
Survival  
Rate (%) 

96 98 98 97 87 94 79 85 56 67 19 22 0 0 

 

When examined by age group, the survival rate for non-smokers is higher in 

almost all cases. The paradox occurs as a higher proportion of non-smokers studied 

belong to older age groups, in which survival rates for both smokers and non-smokers are 

significantly lower compared to younger age groups. Thus the important covariate, 

namely age, was ignored in the aggregated data study, causing a misleading conclusion. 



The study also suffers from a selection bias: the small proportion of older women 

smoking is likely to be due not only due to a low proportion in that cohort being smokers, 

but also to those who had smoked being less likely to survive to be seen in the original 

study. 

Simpson’s Paradox in Graduate Admissions 

The third example of Simpson’s paradox, involves a study of sex bias in graduate 

admissions at the University of California, Berkeley in 1973. Bickel, Hammel and 

O’Connell investigate student applications to graduate study at the University of 

California, Berkeley, for the fall 1973 quarter [8].  

Two assumptions were made before delving into analysis of the data. The first 

assumption was that in any given discipline male and female applicants do not differ in 

respect of their intelligence, skill, qualifications, promise, or any other attribute deemed 

legitimately pertinent to their acceptance as students. This assumption is necessary for a 

meaningful study on gender bias, since otherwise the difference in acceptance of 

applicants by sex could be attributed to differences in their qualifications, intelligence, 

and so on. The second assumption is that the sex ratios of applicants to the various fields 

of graduate study are not importantly associated with any other factors in admission.  

Based on these two assumptions, expected frequencies of males and female 

applicants admitted and denied were calculated on the assumption that male and female 

applicants have equal chances of admission to the university. The computation is shown 

in the following table: 



Table 7. Decisions on applications to Graduate Division for fall 1973, by applicant 
gender 
 
Applicants Outcome Difference 
 Observed Expected  
 Admit Deny Admit Deny Admit Deny 
Men 3738 4704 3460.7 4981.3 277.3 -277.3 
Women 1494 2827 1771.3 2549.7 -277.3 277.3 
 

Based on this computation, 277 fewer women and 277 more men were admitted 

than would have been expected under the assumption noted. The chi-square value for this 

table is 110.8, confirming that the likelihood that the bias against women applicants 

observed appears due to chance alone is extremely low. Thus, we could conclude that a 

bias against female applicants existed in the fall 1973 admissions. Given the hypothesis 

that this bias existed, the researchers further examined to data to determine the 

responsible parties that made admission decisions. The outcome for an application for 

admission to graduate study is determined mainly by the faculty of the department to 

which each applicant applies. However, when a study was done at the departmental level, 

it was found that there were only 4 departments that had a bias against female applicants, 

accounting for a deficit of 26 in women admitted, and 6 departments that had a bias 

against male applicants, accounting for a deficit of 64 men. Analysis on the disaggregated 

data clearly contradicted with the findings of the aggregated data, leading the researchers 

to further investigate their assumptions and identify faults with the method of 

examination. 

In performing their further analysis, they considered an alternative to aggregating 

the data across the 85 departments and computing a statistic. Instead, they computed a 

statistic for each department first and aggregated those using methods described by Fisher 



in [12]. In using this approach, the evidence for campus-wide bias in favor of men is 

extremely weak. In fact, there is evidence of bias in favor of women. 

The paradoxical results exist because the second assumption in the initial analysis 

was faulty. The fact is that not all departments are equally easy to enter. The odds of 

gaining admission to different departments are widely divergent. In addition, the odds of 

getting into each department are strongly associated with the tendency of men and 

women to apply to different departments in different degree. The departments that were 

hardest to get into had a higher proportion of women applicants while the departments 

that were the easiest to get into had a lower proportion of women applicants. Furthermore, 

this phenomenon is even more pronounced in departments with large number of 

applicants. Therefore, the apparent bias against women applicants overall is due to the 

fact that a much larger proportion of women apply to departments that have lower 

admission rates, rather than actual bias in admission policies among departments.  

The authors then proceeded to reanalyze Table 7, using all the data leading to us, 

by estimating the number of women expected to be admitted to a department by 

multiplying the estimated probability of admission of any applicant (regardless of sex) to 

that department by the number of women applying to it. For example, if the chances of 

getting into a department were 50 percent for all applicants, and if 300 women applied to 

it, the expected number of women admitted would be 150, assuming there is no sex bias 

in admissions. By doing this computation for each department separately, and summing 

the results, the actual number of women admitted as a whole was 60 higher than the 

estimated number of women admitted, showing a slight bias toward admitting women 

applicants. The researchers proceeded to consider data for the entire campus from the 



years 1969 to 1973 and found little evidence of bias of any kind, except for 1973, where 

there seemed to be a slight bias toward women.  

Thus, in this example examination of aggregate data on graduate admissions to 

the University of California, Berkeley, for fall 1973 shows a clear but misleading pattern 

of bias against female applicants. If the data are properly pooled, taking into account the 

autonomy of the departmental decision-making, and correcting for the tendency of 

women applicants to apply to graduate departments that have a lower admission rate for 

applicants of either sex, there is a slight bias toward women applicants.  

This example, as well as a number of others [9], show how researchers need to be 

wary of Simpson’s Paradox when performing studies on issues of discrimination and bias, 

since the level of aggregation in data analysis can bias the conclusions derived from such 

studies. 

Section 3 

Recent Research on Simpson’s Paradox 

Besides articles describing real examples of Simpson’s Paradox, there is also a 

body of literature devoted to discussing better ways to interpret Simpson’s Paradox, as 

well as methods that can be used to avoid the misrepresentation of data associated with 

the paradox.  

 

 

 

 

 



A Geometric Interpretation of Simpson’s Paradox 

A. Tan provides a geometric interpretation of Simpson’s Paradox in [4]. Applying 

his geometric approach to illustrating Simpson’s Paradox in our first example, we get the 

following figure: 

 

 

Figure 1 A geometric interpretation of Simpson’s Paradox 
 

where: 

Br = survival rate of those receiving new treatment in California 

Bl = survival rate of those receiving new treatment in Seattle 

Ar = survival rate of those receiving standard treatment in California 

Al = survival rate of those receiving standard treatment in Seattle 

br = proportion of California patients in study who receive new treatment 

Bl = 95% 

Al = 50% 

Ar = 5% 

Br = 10% 

0 
1 

br = 99% 
ar=9% 

A= 46% 

B= 11% 

bl = 1% 
al = 91% 



bl = proportion of California patients in study who receive standard treatment 

ar = proportion of Seattle patients in study who receive new treatment 

al = proportion of Seattle patients in study who receive standard treatment 

A = survival rate for those receiving standard treatment    

B = survival rate for those receiving new treatment 

From the diagram, we observe that even though Ar  < Br and Al  < Bl, we see that 

A > B (draw horizontal lines through A and B), due to the significant differences between 

ar and br, the proportion of patients who receive the new treatment in Seattle and 

California respectively. From the diagram, we would conclude that the new treatment is 

superior to the standard treatment if the equal proportions of patients in both states 

receive the new treatment, i.e. if ar = br. Simpson’s Paradox occurs when the difference 

between ar and br is large enough such that A > B when Ar  < Br and Al  < Bl. The 

geometric interpretation of Simpson’s Paradox provides extra information by showing the 

minimum difference between ar and br needed as a condition for the reversal in 

association to exist. The difference is found for any given level of br by drawing a 

horizontal line through the point of intersection between the vertical line emerging from 

br on the horizontal axis and the diagonal line connecting Br and Bl. By examining the 

point where this horizontal line intersects the diagonal line connecting Ar and Al, we can 

then determine the value of minimum value of ar on the horizontal axis that leads to the 

reversal in association. 

 

 

 



Representation of Data  

In addition, a number of methods have been suggested to avoid the problem of 

Simpson’s Paradox when aggregating data over sub-populations. One such method is 

proposed by Westbrooke in relation to the New Zealand jury study given in Section 2 [6]. 

The original presentation of Table 4 did not incorporate the difference in the ratio of juror 

pools to population size. To overcome this problem, Westbrooke proposes presenting the 

expected number of Maori in the jury pool assuming the selection of random. When this 

approach is used, the following table is obtained: 

Table 8  
Actual Number of Maori in Jury Pool Compared with the Expected Number 
 
 Actual Expected 
Whangarei 28 28 
Auckland 74 76 
Hamilton 23 27 
Rotorua 79 91 
Gisborne 23 25 
Napier 15 19 
New Plymouth 4 9 
Palmerston North 7 14 
Wellington 28 33 
Nelson 1 2 
Christchurch 111 15 
Dunedin 4 6 
Invercargill 3 5 
All Districts 300 350 
 

The expected number of Maori juror for each district is calculated by multiplying 

the size of the overall juror pool in the district by the proportion of Maori in the local 

population. The advantage of using this approach is that the number of jurors – actual and 

expected can be added to get an overall total that means something. The percentages used 



before hid the real situation of Maori under-representation. These totals show under-

representation of Maori at both the national level, as well as at each local level bar one. 

Section 4  

Simpson’s Paradox an Employment Litigation Case 

Description of Data 

A real set of data was analyzed to identify the possibly occurrence of Simpson’s 

Paradox. The data was used in the 2003 Penn Law School Moot Case Competition and 

involved the case Nussbaum v. Arkansas College of Medicine. Nussbaum was a woman 

pediatrician who sued the Arkansas College of Medicine claiming that as a woman, she 

had been discriminated against both in terms of salary and in being passed over for 

promotion. The plaintiff’s argument hinged on the fact that female salaries were 

significantly lower compared to male salaries within the college on average. The average 

male salary in 1985 was $194914, while the average female salary in 1985 was $130877. 

The variables in the dataset included information on the department each faculty 

member belonged too, their gender, whether they had a primarily research or clinical 

emphasis, board certification, publication rate, experience level, professorship rank and 

their salaries in 1984 and 1985. There were a total of 261 observations in the dataset. 

Findings 

Using simple regression, I first validated that the salaries of 1984 and 1985 are closely 

correlated (R2 value of 99.8%). I then proceeded to perform analysis only on the 1985 

salary data. Using an approach similar to the Berkeley admissions case, I performed 

analysis at the departmental level, assuming that departments were the main decision-

makers in deciding salary levels.  



Since there was no strong correlation between experience or publication rate and 

salaries, I performed simple comparisons without explicitly adjusting for experience 

levels and publication rates. Within each of the six departments, male salaries tended to 

be higher than female salaries on average. However, the difference between average male 

and female salary were of much smaller magnitude, compared to the difference in male 

and female salary when the data was aggregated as a whole. Although there is no obvious 

case of Simpson’s Paradox in this case, since male salaries were higher than female 

salaries at both the disaggregated, departmental level, as well as the aggregated level, 

there is a “weak” Simpsonian effect, which I define as a reduction in the strength of 

association between two variables when the analysis is considered at an appropriate 

disaggregated level, that ameliorates the difference between male and female salaries 

when examined at the departmental level. The additional factor of analysis in this case is 

the fact that a much large proportion of men tend to work in higher-paying departments 

compared to women, thus making the difference in average salaries even more 

pronounced at the aggregate level. Even though no conclusive evidence against gender 

discrimination can be found in this case, the small number of conclusions, coupled with 

the unclear relationship between experience and salary levels complicate the task of 

drawing clear conclusions in the context of the litigation suit. 



Section 5 

Conclusions 

Simpson’s Paradox is a relevant topic of research since its occurrence has 

important implications in business surveys, litigation, social science research and the 

public policy domain. Present research focuses on methods of finding quantitative 

measures of data used in identifying the occurrence of the paradox, as well as methods of 

avoiding inconsistent results when aggregating data, specifically in the case of collapsing 

multi-dimensional contingency tables [13,14]. 

Haunsperger and Saari points out that the inconsistent behavior associated with 

reaching different conclusions at different levels of aggregation in data analysis occurs in 

many, if not most statistical decision processes [15]. They propose a simple theory to 

determine whether statistical decision processes admit such inconsistencies and to find 

data restrictions that avoid outcomes such as Simpson’s Paradox. 

Ultimately, the issue of bias and discrimination in any statistical study is more 

subtle that one might imagine, and great care must be taken to identify and minimize any 

prejudicial treatment in data analysis [8]. Appropriate corrective measures should then be 

taken to provide analysis from which meaningful conclusions can be drawn. 
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Appendix: 

Study of Nussbaum v. Arkansas College of Medicine 
Key: 
0 = Female 
1 = Male 
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Figure 2 Regression between 1984 and 1985 salaries 
 

Linear Fit
 

Linear Fit 
Sal85 = -419.512 + 1.1024317 Sal84 
 
Summary of Fit 
RSquare 0.998511 
RSquare Adj 0.998505 

 



 
Figure 3 Analysis of Salary Levels (Aggregated) 

 
 

 
Figure 4 Analysis of Salary Levels for Department 1 (Biochemistry/Molecular Biology) 

 



 
Figure 5 Analysis of Salary Levels for Department 2 (Physiology) 

 

 
Figure 6 Analysis of Salary Levels for Department 3 (Genetics) 

 



 
Figure 7 Analysis of Salary Levels for Department 4 (Pediatrics) 

 

 
Figure 8 Analysis of Salary Levels for Department 5 (Medicine) 

 



 
Figure 9 Analysis of Salary Levels for Department 6 (Surgery) 

 
 



Figure 10 Comparison of Salaries across Departments 
 

 

 
Figure 11 Percentage of Men and Women in each Deparment 
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