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Abstract

Simpson’s paradox refers to the reversal of a statistical relationship between two variables in sub-populations
when the sub-populations are combined and analyzed as a population. This article is intended to provide a
broad survey of the past, present and future research surrounding the issue. Real data from a discrimination
litigation case is examined to identify the occurrence of the paradox.
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Abstract
Simpson’s paradox refers to the reversal of a statistical relationship between two
variables in sub-populations when the sub-populations are combined and analyzed as a
population. This article is intended to provide a broad survey of the past, present and
future research surrounding the issue. Real data from a discrimination litigation case is
examined to identify the occurrence of the paradox.
Section 1
Introduction

Simpson’s Paradox was first discovered by Karl Pearson in 1899. The paradox
derives its name from “The Interpretation of Interaction in Contingency Tables” [1].
Simpson’s Paradox refers to the reversal of a statistical relationship between two
variables in sub-populations when the sub-populations are aggregated and analyzed as a
population. Alternatively, Simpson’s Paradox can be thought of as the reversal of a
statistical relationship between two variables when additional factors are added in the
analysis.

Blyth states Simpson’s Reversal Paradox as follows [2].
It is possible to have:
P(AIB)>P(AIB’)
and have at the same time both: @))
P(AIB and C) <P(A B’ and C)
P(AIBand C’) <P(A 1B’ and C’),
where P(A | B) is the probability of event A conditional on event B and the prime

indicates complements



First consider a fictitious example from [2] that illustrates the paradox:
A doctor in California conducted a new treatment on patients in two different cities,
California (C) and Seattle (C’). As each patient from California became available, he
assigned him to the new treatment with probability 0.91, leaving him to the standard
treatment with probability 0.09. In the same way, he assigned each patient in New Jersey
to the new treatment with probability 0.01, leaving him to the standard treatment with
probability 0.99. (These probabilities were expected to give him about the number of
patients he could handle in each city).Observing the survival rate on the patients in both

cities, the following results were obtained:

Table 1
Number of Patients
Outcome Treatment
Standard New
Died 5950 (54%) 9005 (89%)
Survived 5050 (46%) 1095 (11%)
Total 11000 (100%) 10100 (100%)

Based the results in Table 1, it appears that the new treatment is clearly inferior to

the standard treatment, since only 11 percent of the patients receiving the new treatment
survived, compared to 46 percent under the standard treatment. However, when the data

is disaggregated for the two cities, the opposite conclusion is reached.

Table 2
Number of Patients
Outcome Patient Type C Patient Type C’
Treatment Treatment
Standard New Standard New
Died 950 (95%) 9000 (90%) 5000 (50%) 5 (5%)
Survived 50 (5%) 1000 (10%) 5000 (50%) 95 (95%)
Total 1000 (100%) 10000 (100%) 10000 (100%) 100 (100%)




From the data in Table 2, patients under the new treatment in California (C) had a
survival rate of 10 percent compared to 5 percent for those under the standard treatment,
while patients under the new treatment in Seattle (C’) had a survival rate of 95 percent
compared to 50 percent for those under the standard treatment. Thus, it appears that the
new treatment is a superior treatment to the standard treatment, a conclusion contrary to

the one derived from examining the aggregated data.

The paradox can be explained once we see what has occurred: the C patients are
much less likely to recover, and since the new treatment was given mostly to C patients,
the new treatment showed a low survival rate since it was tried out mostly on the most
seriously ill patients. If event A is survival and B is the new treatment, we have
Simpson’s Paradox as stated in (1):

P(AIB)=0.11<P(AIB’)=0.46
P(AIBand C) =0.10 >P(A I B’ and C) =0.05
P(AIBand C’) =0.95>P(A B’ and C’) =0.50
One tends to reason that this is intuitively impossible because:
P(A | B) = An equally weighted average of P(A | BC) and P (A | BC’)
P (A 1 B’) = An equally weighted average of P(A | B’C) and P (A | B’C’)
Such an assumption is incorrect because the averages have different weightings given by
the following equation:
P(AIB)=P(CIB)-P(AIBC)+P(C’ IB) -P(AIBC’) (2)
P(AIB’)=P(CIB’)-P(AIB’C)+P(C’IB’)-P(AIB’C’)

In the above example,



P(C I B) =100/101
P(C’ I B)=1/101
P(CIB’)=1/11
P(C’IB’) =10/11
Thus the surprising fact that an average of 0.10 and 0.95 is so much smaller than

an average of 0.05 and 0.50 is easily explained by showing according to (2):

0.11 =100/101 - 0.10 + 1/101 - 0.95
0.46 =1/11 - 0.05 + 10/11 - 0.50

Here the paradox could not happen if B and C were independent, i.e., if the
proportion receiving the new treatment were the same for C and C’ patients. However,
here the paradox results due to the dependence or the interaction of B and C.

A second example is given by Gardner [3] and is shown in the following table:

Table 3

Box1 |Box2 |Box3 |Box4 |Box1+3 |Box2+4
No. of black chips 5 3 6 9 11 12
No. of white chips 6 4 3 5 9 9

To maximize the likelihood of drawing a black chip, box 1 is preferred over box 2
(since 5/11 > 3/7) and box 3 is preferred over box 4 (since 6/9 > 9/14). Yet, when the
contents of box 1 and 3 are combined and the contents of box 2 and box 4 are combined,
the second combination is preferred over the first one (since 12/21 > 11/20). The paradox
can be stated in terms of positive numbers. It is possible to have:

a+b>e+f

c+td g+h

and at the same time have both: 3)




bt
d h

The equivalence of (1) and (3) can be seen by setting:
a=P(CIB)-P(AIBC)

b=P(C’ IB)-P(AIBC’)

c=P(CIB)

d=P(C’ I B)

e=P(CIB’)-P(AIB’C)

f=P(C’IB’)-P(AIB’C)

g=P(CIB’)

h=P(C’ IB’)

Section 2 provides four real-life examples where Simpson’s Paradox occurs. The
examples, which encompass a broad range of fields, provide a motivation for further
understanding the consequences of bias in sampling associated with the paradox. Section
3 discusses other literature related to Simpson’s Paradox, including a geometric
interpretation and alternative data presentation methods. In Section 4, analysis on a real-
life data set from a gender discrimination case is presented in light of the paradox.
Section 5 discusses Simpson’s Paradox in a broader light as a topic in sampling and

suggests several avenues for further research.



Section 2
Real-life examples of Simpson’s Paradox

There have been numerous papers written to describe examples of Simpson’s
paradox, both using fictitious data [2,4,5] as well as real data [6,7,8,9,10,11]. In this
section, four examples of Simpson’s paradox in real-life are provided to illustrate the
point that the phenomena occurs across sampling studies in different fields of study.
Simpson’s Paradox in Jury Selection

The first example relates to a survey on jury composition in New Zealand by the
New Zealand Department of Justice in September 1993 [6]. The issue of particular
interest in the survey was the question of representation of the Maori tribe, the indigenous
people of New Zealand. The original impetus for the research was a suspicion that Maori
was under-represented on juries. The Department of Justice surveyed the composition of
juries and the pool of the jurors the juries were selected from during a period in
September and October 1993. Looking the results nationally, the report noted that “9.5
percent of people living within the jury districts were Maori. This compares with 10.1
percent of Maori in the pool of potential jurors. It is tempting to conclude, therefore, that
Maori were adequately represented in the jury pool”. Since the draft report gave the
Maori proportion for each court district, Westbrooke further analyzed the data using 1991

Census data and found the following results:



Table 4

Percentage Maori Ethnic Group

District Eligible Population | Jury Pool Shortfall
(aged 20 — 64)
Whangarei 17.0 16.8 0.2
Auckland 9.2 9.0 0.2
Hamilton 13.5 11.5 2.0
Rotorua 27.0 23.4 3.6
Gisborne 32.2 29.5 2.7
Napier 15.5 12.4 3.1
New Plymouth 8.9 4.1 4.8
Palmerston North 8.9 4.3 4.6
Wellington 8.7 7.5 1.2
Nelson 3.9 1.7 2.2
Christchurch 4.5 3.3 1.2
Dunedin 33 24 0.9
Invercargill 8.4 4.8 3.6
All Districts 9.5 10.1 -0.6

Source: Unpublished 1991 Census tables, and Trial By Peers

Looking at the disaggregated data, the Maori are under-represented in every
district. However, when the data is aggregated at the national level, Maori is over-
represented. The paradox arises because the jury pool size in each district is not
proportional to the population of the cities. Certain districts have a much higher juror
pool to population ratio than others. It turns out that those districts with a high proportion
of Maori tend to have relatively large jury pools, and this pulls the proportion of Maori in
the jury pool for the combined districts above the proportion of Maori in the population.
Example of Simpson’s Paradox when a Covariate is Ignored

The second example involves a study on smoking habits and survival rates [7].
Between 1972 and 1974 a one-in-six survey of the electoral roll was carried out in
Whickham, a mixed urban and rural district near Newcastle upon Tyne, United Kingdom

(Tunbridge et al., 1977). A follow-up study was conducted twenty years later




(Vanderpump et al. 1995). Appleton examines the study data, restricting the analysis to
1314 women smokers in the district for simplicity.

The following study results were obtained:

Table 5
Relationship Between Smoking Habits and 20-Year Survival in 1314 Women
Smoker
Yes No Total
Dead 139 230 369
Alive 443 502 945
582 732 1314
Survival Rate 76.1% 68.6 %

The results imply a significant protective effect of smoking because the survival
rate for smokers is higher (76 percent) than the survival rate of non-smokers (69 percent).
The explanation for this baffling result is provided when an extra variable, age, which is
strongly related to survival, is added to the analysis. Table 6 shows the effect of adding
the variable to the analysis:

Table 6

Numbers of Women Smokers and Nonsmokers in Different Age Groups, Showing their
20-year Survival Status

Age 18 -24 25-34 35-44 45 -54 55-64 65 -74 75+
Smoker? + - + - + - + - + - + - + -
Dead 2 1 3 5 14 7 27 12 51 40 29 | 101 | 13 64
Alive 53 61 | 121 | 152 | 95 | 114 | 103 | 66 64 81 7 28 0 0

Survival 96 98 98 97 87 94 79 85 56 67 19 22 0 0
Rate (%)

When examined by age group, the survival rate for non-smokers is higher in
almost all cases. The paradox occurs as a higher proportion of non-smokers studied
belong to older age groups, in which survival rates for both smokers and non-smokers are
significantly lower compared to younger age groups. Thus the important covariate,

namely age, was ignored in the aggregated data study, causing a misleading conclusion.




The study also suffers from a selection bias: the small proportion of older women
smoking is likely to be due not only due to a low proportion in that cohort being smokers,
but also to those who had smoked being less likely to survive to be seen in the original
study.

Simpson’s Paradox in Graduate Admissions

The third example of Simpson’s paradox, involves a study of sex bias in graduate
admissions at the University of California, Berkeley in 1973. Bickel, Hammel and
O’Connell investigate student applications to graduate study at the University of
California, Berkeley, for the fall 1973 quarter [8].

Two assumptions were made before delving into analysis of the data. The first
assumption was that in any given discipline male and female applicants do not differ in
respect of their intelligence, skill, qualifications, promise, or any other attribute deemed
legitimately pertinent to their acceptance as students. This assumption is necessary for a
meaningful study on gender bias, since otherwise the difference in acceptance of
applicants by sex could be attributed to differences in their qualifications, intelligence,
and so on. The second assumption is that the sex ratios of applicants to the various fields
of graduate study are not importantly associated with any other factors in admission.

Based on these two assumptions, expected frequencies of males and female
applicants admitted and denied were calculated on the assumption that male and female
applicants have equal chances of admission to the university. The computation is shown

in the following table:



Table 7. Decisions on applications to Graduate Division for fall 1973, by applicant
gender

Applicants Outcome Difference
Observed Expected
Admit Deny Admit Deny Admit Deny
Men 3738 4704 3460.7 4981.3 277.3 -2717.3
Women 1494 2827 1771.3 2549.7 -277.3 271.3

Based on this computation, 277 fewer women and 277 more men were admitted
than would have been expected under the assumption noted. The chi-square value for this
table is 110.8, confirming that the likelihood that the bias against women applicants
observed appears due to chance alone is extremely low. Thus, we could conclude that a
bias against female applicants existed in the fall 1973 admissions. Given the hypothesis
that this bias existed, the researchers further examined to data to determine the
responsible parties that made admission decisions. The outcome for an application for
admission to graduate study is determined mainly by the faculty of the department to
which each applicant applies. However, when a study was done at the departmental level,
it was found that there were only 4 departments that had a bias against female applicants,
accounting for a deficit of 26 in women admitted, and 6 departments that had a bias
against male applicants, accounting for a deficit of 64 men. Analysis on the disaggregated
data clearly contradicted with the findings of the aggregated data, leading the researchers
to further investigate their assumptions and identify faults with the method of
examination.

In performing their further analysis, they considered an alternative to aggregating
the data across the 85 departments and computing a statistic. Instead, they computed a

statistic for each department first and aggregated those using methods described by Fisher




in [12]. In using this approach, the evidence for campus-wide bias in favor of men is
extremely weak. In fact, there is evidence of bias in favor of women.

The paradoxical results exist because the second assumption in the initial analysis
was faulty. The fact is that not all departments are equally easy to enter. The odds of
gaining admission to different departments are widely divergent. In addition, the odds of
getting into each department are strongly associated with the tendency of men and
women to apply to different departments in different degree. The departments that were
hardest to get into had a higher proportion of women applicants while the departments
that were the easiest to get into had a lower proportion of women applicants. Furthermore,
this phenomenon is even more pronounced in departments with large number of
applicants. Therefore, the apparent bias against women applicants overall is due to the
fact that a much larger proportion of women apply to departments that have lower
admission rates, rather than actual bias in admission policies among departments.

The authors then proceeded to reanalyze Table 7, using all the data leading to us,
by estimating the number of women expected to be admitted to a department by
multiplying the estimated probability of admission of any applicant (regardless of sex) to
that department by the number of women applying to it. For example, if the chances of
getting into a department were 50 percent for all applicants, and if 300 women applied to
it, the expected number of women admitted would be 150, assuming there is no sex bias
in admissions. By doing this computation for each department separately, and summing
the results, the actual number of women admitted as a whole was 60 higher than the
estimated number of women admitted, showing a slight bias toward admitting women

applicants. The researchers proceeded to consider data for the entire campus from the



years 1969 to 1973 and found little evidence of bias of any kind, except for 1973, where
there seemed to be a slight bias toward women.

Thus, in this example examination of aggregate data on graduate admissions to
the University of California, Berkeley, for fall 1973 shows a clear but misleading pattern
of bias against female applicants. If the data are properly pooled, taking into account the
autonomy of the departmental decision-making, and correcting for the tendency of
women applicants to apply to graduate departments that have a lower admission rate for
applicants of either sex, there is a slight bias toward women applicants.

This example, as well as a number of others [9], show how researchers need to be
wary of Simpson’s Paradox when performing studies on issues of discrimination and bias,
since the level of aggregation in data analysis can bias the conclusions derived from such
studies.

Section 3
Recent Research on Simpson’s Paradox

Besides articles describing real examples of Simpson’s Paradox, there is also a
body of literature devoted to discussing better ways to interpret Simpson’s Paradox, as
well as methods that can be used to avoid the misrepresentation of data associated with

the paradox.



A Geometric Interpretation of Simpson’s Paradox
A. Tan provides a geometric interpretation of Simpson’s Paradox in [4]. Applying
his geometric approach to illustrating Simpson’s Paradox in our first example, we get the

following figure:

B = 95%

A, =50%

B=11%

B=9%

b = 99%

B, = 10% A
A =5% - »
- a=91% g
bi=1%
Figure 1 A geometric interpretation of Simpson’s Paradox

where:

B; = survival rate of those receiving new treatment in California

B, = survival rate of those receiving new treatment in Seattle

A = survival rate of those receiving standard treatment in California
A\ = survival rate of those receiving standard treatment in Seattle

b, = proportion of California patients in study who receive new treatment



b; = proportion of California patients in study who receive standard treatment
a, = proportion of Seattle patients in study who receive new treatment
a; = proportion of Seattle patients in study who receive standard treatment
A = survival rate for those receiving standard treatment
B = survival rate for those receiving new treatment

From the diagram, we observe that even though A; < B, and A; < B; we see that
A > B (draw horizontal lines through A and B), due to the significant differences between
ar and br, the proportion of patients who receive the new treatment in Seattle and
California respectively. From the diagram, we would conclude that the new treatment is
superior to the standard treatment if the equal proportions of patients in both states
receive the new treatment, i.e. if a, = b,. Simpson’s Paradox occurs when the difference
between a; and b, is large enough such that A > B when A; < B, and A; < B,. The
geometric interpretation of Simpson’s Paradox provides extra information by showing the
minimum difference between a, and b, needed as a condition for the reversal in
association to exist. The difference is found for any given level of b, by drawing a
horizontal line through the point of intersection between the vertical line emerging from
b, on the horizontal axis and the diagonal line connecting B, and B;. By examining the
point where this horizontal line intersects the diagonal line connecting A, and A;, we can
then determine the value of minimum value of a, on the horizontal axis that leads to the

reversal in association.



Representation of Data

In addition, a number of methods have been suggested to avoid the problem of
Simpson’s Paradox when aggregating data over sub-populations. One such method is
proposed by Westbrooke in relation to the New Zealand jury study given in Section 2 [6].
The original presentation of Table 4 did not incorporate the difference in the ratio of juror
pools to population size. To overcome this problem, Westbrooke proposes presenting the
expected number of Maori in the jury pool assuming the selection of random. When this

approach is used, the following table is obtained:

Table 8
Actual Number of Maori in Jury Pool Compared with the Expected Number
Actual Expected
Whangarei 28 28
Auckland 74 76
Hamilton 23 27
Rotorua 79 91
Gisborne 23 25
Napier 15 19
New Plymouth 4 9
Palmerston North 7 14
Wellington 28 33
Nelson 1 2
Christchurch 111 15
Dunedin 4 6
Invercargill 3 5
All Districts 300 350

The expected number of Maori juror for each district is calculated by multiplying
the size of the overall juror pool in the district by the proportion of Maori in the local
population. The advantage of using this approach is that the number of jurors — actual and

expected can be added to get an overall total that means something. The percentages used



before hid the real situation of Maori under-representation. These totals show under-
representation of Maori at both the national level, as well as at each local level bar one.
Section 4
Simpson’s Paradox an Employment Litigation Case
Description of Data
A real set of data was analyzed to identify the possibly occurrence of Simpson’s
Paradox. The data was used in the 2003 Penn Law School Moot Case Competition and
involved the case Nussbaum v. Arkansas College of Medicine. Nussbaum was a woman
pediatrician who sued the Arkansas College of Medicine claiming that as a woman, she
had been discriminated against both in terms of salary and in being passed over for
promotion. The plaintiff’s argument hinged on the fact that female salaries were
significantly lower compared to male salaries within the college on average. The average
male salary in 1985 was $194914, while the average female salary in 1985 was $130877.
The variables in the dataset included information on the department each faculty
member belonged too, their gender, whether they had a primarily research or clinical
emphasis, board certification, publication rate, experience level, professorship rank and
their salaries in 1984 and 1985. There were a total of 261 observations in the dataset.
Findings
Using simple regression, I first validated that the salaries of 1984 and 1985 are closely
correlated (R2 value of 99.8%). 1 then proceeded to perform analysis only on the 1985
salary data. Using an approach similar to the Berkeley admissions case, I performed
analysis at the departmental level, assuming that departments were the main decision-

makers in deciding salary levels.



Since there was no strong correlation between experience or publication rate and
salaries, I performed simple comparisons without explicitly adjusting for experience
levels and publication rates. Within each of the six departments, male salaries tended to
be higher than female salaries on average. However, the difference between average male
and female salary were of much smaller magnitude, compared to the difference in male
and female salary when the data was aggregated as a whole. Although there is no obvious
case of Simpson’s Paradox in this case, since male salaries were higher than female
salaries at both the disaggregated, departmental level, as well as the aggregated level,
there is a “weak” Simpsonian effect, which I define as a reduction in the strength of
association between two variables when the analysis is considered at an appropriate
disaggregated level, that ameliorates the difference between male and female salaries
when examined at the departmental level. The additional factor of analysis in this case is
the fact that a much large proportion of men tend to work in higher-paying departments
compared to women, thus making the difference in average salaries even more
pronounced at the aggregate level. Even though no conclusive evidence against gender
discrimination can be found in this case, the small number of conclusions, coupled with
the unclear relationship between experience and salary levels complicate the task of

drawing clear conclusions in the context of the litigation suit.



Section 5
Conclusions

Simpson’s Paradox is a relevant topic of research since its occurrence has
important implications in business surveys, litigation, social science research and the
public policy domain. Present research focuses on methods of finding quantitative
measures of data used in identifying the occurrence of the paradox, as well as methods of
avoiding inconsistent results when aggregating data, specifically in the case of collapsing
multi-dimensional contingency tables [13,14].

Haunsperger and Saari points out that the inconsistent behavior associated with
reaching different conclusions at different levels of aggregation in data analysis occurs in
many, if not most statistical decision processes [15]. They propose a simple theory to
determine whether statistical decision processes admit such inconsistencies and to find
data restrictions that avoid outcomes such as Simpson’s Paradox.

Ultimately, the issue of bias and discrimination in any statistical study is more
subtle that one might imagine, and great care must be taken to identify and minimize any
prejudicial treatment in data analysis [8]. Appropriate corrective measures should then be

taken to provide analysis from which meaningful conclusions can be drawn.
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Appendix:

Study of Nussbaum v. Arkansas College of Medicine

Key:
0 = Female
1 = Male
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Figure 2 Regression between 1984 and 1985 salaries

Linear Fit

Linear Fit
Sal85 = -419.512 + 1.1024317 Sal84

Summary of Fit
RSquare 0.998511
RSquare Adj 0.998505
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Figure 3 Analysis of Salary Levels (Aggregated)
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Figure 4 Analysis of Salary Levels for Department 1 (Biochemistry/Molecular Biology)
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Figure 5 Analysis of Salary Levels for Department 2 (Physiology)
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Figure 6 Analysis of Salary Levels for Department 3 (Genetics)
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Figure 7 Analysis of Salary Levels for Department 4 (Pediatrics)
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Figure 8 Analysis of Salary Levels for Department 5 (Medicine)
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Figure 9 Analysis of Salary Levels for Department 6 (Surgery)
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Figure 10 Comparison of Salaries across Departments

: Contingency Analysis of Dept By Sex
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| Contingency Table J
Sex
CoundD 1
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1 20 n S0y
18.87 19.35
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6 = 33 40
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Figure 11 Percentage of Men and Women in each Deparment
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