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Virtual Human Animation Based on Movement Observation and
Cognitive Behavior Models

Abstract
Automatically animating virtual humans with actions that reflect real human motions is still a challenge. We
present a framework for animation that is based on utilizing empirical and validated data from movement
observation and cognitive psychology. To illustrate these, we demonstrate a mapping from Effort motion
factors onto expressive arm movements, and from cognitive data to autonomous attention behaviors. We
conclude with a discussion on the implications of this approach for the future of real-time virtual human
animation.
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Abstract

Automatically animating virtual humans with actions
that reflect real human motions is still a challenge. We
present a framework for animation that is based on utilizing
empirical and validated data from movement observation
and cognitive psychology. To illustrate these, we demon-
strate a mapping from Effort motion factors onto expressive
arm movements, and from cognitive data to autonomous at-
tention behaviors. We conclude with a discussion on the
implications of this approach for the future of real-time vir-
tual human animation.

1 Introduction

Automatically animating virtual humans with actions
that reflect real human motions is still a challenge. Skilled
animators are able to create effective and compelling hu-
man characters through labor-intensive scripting of every
subtlety of motion. For example, in producing the movie A
Bug’s Life, Pixar animators manipulate huge spreadsheets
of animation parameters [40]. As we expect more human-
like real-time behaviors, we cannot afford the temporal in-
dulgence and expert skill required by off-line animation.
Even if we are provided with real-time movement modules
that can animate walking or gesturing in real-time, goals
and parameters for them must be provided. This contextual
information comes from at least three sources:

the external world,

the objective being undertaken by the character, and

the internal model of what it means to be human.

In order to address the joint problems of enhancing “human-
ness” while insisting on real-time synthesis, a new approach

is needed. In this paper we explore the distinction between
the external and internal motivators that ultimately create
more believable movements.

We present a framework for animation that is based on
utilizing empirical and validated data from movement ob-
servation and cognitive psychology. To illustrate these, we
demonstrate a mapping from Laban’s Effort motion fac-
tors [11, 20] onto expressive arm motions, and from cog-
nitive data to autonomous attention behaviors. These two
approaches to animation exemplify our philosophy:

Human animation requires an understanding of empiri-
cal data on human movement and cognitive properties.

Human movement cannot simply be captured and re-
played, but must be parameterized and re-usable in var-
ious contexts.

Human reactions to the world must be combined with
task objectives.

Human sensing provides individualized models of the
local context which can then be combined with internal
models of personality and emotion to produce appro-
priate actions and reactions.

These desiderata have some consequences:

Formal approaches to animation such as genetic algo-
rithms [25, 42, 32], are not likely to converge to natural
human motions without extraordinary care to link the
fitness or evaluation functions to known human mo-
tions, thus obviating this approach.

Reactive approaches for navigation and pursuit [26,
31, 38] do not readily accommodate human task ob-
jectives, sensing costs, and cognitive principles.



Humans exhibit a wide variety of expressive actions
which reflect their personalities, emotions, and com-
municative needs [6, 8, 39]. These variations often in-
fluence the performance of simpler gestural or facial
movements.

In order to focus this presentation, we will restrict our
scope to two problem areas among the several that we are
currently investigating: expressing the qualitative aspects
of movement and controlling visual attention. For Effort,
we use the collected empirical wisdom and descriptive tax-
onomy of Laban Movement Analysis to create movement
models. This parameterization not only yields a convenient
user interface that covers a wide range of human expres-
sions, but also appears amenable to driving animation from
a character’s inner drives and temperaments, emotions, or
personalities. For attention and motions dependent on at-
tention such as reaching and walking, sensing events and
interleaving consequent actions is crucial. Attention is a
reaction to what is sensed; action selection is mediated by
cognitive models.

2 Animating Expressive Movement

A system that allows users to customize basic move-
ments based on a character’s personality, mood, and atti-
tudes is the first step towards simplifying the development
of a repertoire of characters with a wide range of expres-
siveness. By selecting a general human movement descrip-
tion language to customize motions, such a system can also
lead to the generation of virtual characters from different
cultures. Although certain gestures are culture-specific, the
descriptions of the movements of individuals with the same
emotions and intent are often similar. A playful child moves
with free, indirect abandon; an aggressor makes strong, di-
rect, and sudden attacks; and a soldier marches in bound,
sustained strides. We present a technique where the user
customizes movements through a qualitative description –
the Effort component of Laban Movement Analysis. This
is the first step towards a system where a user creates char-
acter by specifying attitudes and intentions, which in turn
may eventually lead to the automatic generation of appro-
priate movements from speech text, a storyboard script, or
a behavioral simulation.

2.1 Background: Laban Movement Analysis

Rudolf Laban (1879-1958) made significant contribu-
tions to the study of movement, observing the movements
of dancers, martial artists, industrial workers, performers of
cultural rituals, business executives, and even people in ev-
ery day situations. His theories on movement and its exten-
sion by his students and colleagues have resulted in a rich

vocabulary for describing and analyzing movement, leading
to the development of Laban Movement Analysis (LMA)
[5, 23, 11, 22], which is promoted by the Laban/Bartenieff
Institute of Movement Studies (LIMS) [27]. LMA has
evolved into a comprehensive notation system being used
in dance, nonverbal research, ergonomics, anthropology,
psychoanalysis, dance therapy, and many movement-related
fields.

Laban Movement Analysis has four major components:
Body, Space, Shape, and Effort1. We only use the Effort
component of Laban Movement Analysis because it pro-
vides a language for describing the expressivity of move-
ments. The Body, Space, and Shape components deal with
structural and spatial aspects of movement, while Effort
describes the qualitative aspects of movement—how one
moves rather than what one is doing. Effort comprises four
motion factors: Space, Weight, Time, and Flow. Each mo-
tion factor ranges between indulging in and fighting against
the quality, giving eight Effort Elements: Indirect, Direct,
Light, Strong, Sustained, Sudden, Free, and Bound. These
extremes are seen as basic, “irreducible” qualities, meaning
they are the smallest units of change in an observed move-
ment.

The Space motion factor refers to one’s attention to the
surroundings. Space dynamics vary from Indirect to Direct.
Indirect is seen as flexible, meandering, wandering, and
with multi-focus attention. Direct motion has a single fo-
cus and is channeled and undeviating. Indirect movements
include waving away bugs, slashing through plant growth
to get through the woods, surveying a crowd of people, and
searching a room for misplaced keys. Examples of Direct
movements include pointing to a particular spot, threading
a needle, and describing the exact outline of an object.

The Weight motion factor describes one’s attitude to-
wards gravity and the impact of one’s movement. Weight
dynamics range from Light to Strong. Light movements are
buoyant and delicate, easily overcoming gravity and marked
by decreasing pressure. Strong movements are powerful,
have an impact, and involve throwing one’s weight into the
movement. Light motions include adding dabs of paint to a
canvas, pulling a splinter out of one’s finger, and describing
the movement of a feather. Strong motions include punch-
ing, pushing a heavy object, wringing a towel, and express-
ing a firmly held opinion.

The Time motion factor involves one’s lack of or sense
of urgency. Sustained movements are lingering, leisurely,
and indulging in time; while Sudden movements are hurried
and urgent. The stretch of a yawn and the stroking of a pet
can be sustained. Swatting a fly, lunging to catch a ball,
and grabbing a child from the path of danger are Sudden
movements.

1Throughout this paper, we capitalize key terms defined by LMA to
distinguish them from their common English language usage.



The Flow motion factor describes the nature of control
and bodily tension. Human movement displays a continu-
ous variation in flow changes, as well as expressive fluidity.
Free movements are uncontrolled and abandoned–the indi-
vidual is unable to stop in the middle of the movement. Ex-
amples include waving wildly, shaking off water, and fling-
ing a rock into a pond. Bound movements are controlled
and restrained. Slow motion is Bound (and notably NOT
Sustained) because the mover can stop at any moment, and
the fluidness is constrained. Holding back tears and carry-
ing a cup of hot liquid are Bound.

2.2 Using Effort for Animation

Effort descriptions of Laban Movement Analysis provide
an adequate interface for controlling the expressiveness of
computer animated figures, as originally proposed (but not
implemented) by Badler [4]. Effort covers the range of hu-
man expressive movements since it is derived from exten-
sive observation practice. Also, Effort is objective enough
that Certified Movement Analysts (CMAs) trained in Laban
Movement Analysis as well as laypersons can reach a rela-
tively high level of agreement on its descriptions. Most im-
portantly, Effort uses a small number of textual descriptors,
which proves intuitive compared to detailed, cumbersome
notations or mathematical and physics-based parameters for
describing movements.

In [9], we define a set of low-level movement parameters
that are necessary to describe qualitative aspects of move-
ment. Using these structures, we use empirical methods to
build a model of Effort. These methods include: visual anal-
ysis of video and motion capture data playback of a Certi-
fied Movement Analyst2 performing Effort combinations,
descriptions of Effort from the literature [23, 11, 5, 22], ap-
plication and extension of traditional and computer tech-
niques, and much experimentation with feedback from our
consultant CMA. In this paper, we overview how we defined
and used our Effort model in an animation control module;
[9] contains a more detailed description of the model and its
implementation.

The set of low-level movement parameters includes
velocity changes, anticipation, overshoot, interpolation
method, trajectory definition, duration, wrist bend, arm
twist, limb volume, and torso support. Several of these
low-level movement parameters are used as input into the
interpolation process. We interpolate using a variation of
the double interpolant method introduced by Steketee and
Badler [33]. They use both kinetic and position interpolants
to separate kinetic control from parametric (position) con-
trol. The kinetic interpolant specifies the relationship be-
tween time and keyframes, while the position interpolant
defines the relationship between keyframes and position or

2Janis Pforsich, CMA

some other motion parameter. Rather than requiring the
user to specify the times of the keypoints to generate a ki-
netic interpolant, we use a method that takes a keyframe
number as input and computes an interpolation parameter
that is used to determine position values (or joint angle val-
ues for angular interpolation) for the given frame. For each
frame, we normalize the number of frames between key-
points to 1 and determine where the given frame lies on the
normalized scale. We then use this value in a parameter-
ized timing function to compute the value of the interpola-
tion parameter. While the original method was applied to
a whole movement (a series of keyframes), we specify in-
terpolants between each keypoint. By parameterizing the
position interpolant, we achieve varying velocity changes,
anticipation, overshoot, and end-effector path. Strong and
Sudden movements are accelerating, while Light and Sus-
tained movements are decelerating. Strong movements be-
gin with anticipation, while Light and Free movements
overshoot their goals. Direct motions follow a straighter
path between keypoints, while Indirect motions follow a
more curved path. We also allow three types of interpo-
lation: end-effector position, joint angle, and elbow posi-
tion. The default interpolation method is end-effector posi-
tion interpolation. Joint angle interpolation is used for Free
movements, while elbow position interpolation is used for
Indirect motions.

A duration parameter changes the number of frames be-
tween keypoints. Sudden movements shorten the amount of
time between keypoints, while Sustained and Bound move-
ments lengthen the time. Wrist bend specifies the changes
in the wrist throughout a movement. Bound and Strong
movements keep a stiff, slightly bent wrist. Light, Free, and
Indirect movements display a significant amount of wrist
bends. Indirect movements also displays elbow and wrist
twists. Changes in the volume of the upper arm are used to
simulate biceps contraction in Strong movements. Squash
and stretch of the figure’s torso is used to simulate the ex-
pansion and contraction of the chest cavity.

We implement EMOTE (Expressive MOtion Engine),
a character animation control module that uses this Effort
model. EMOTE animations are defined by setting a se-
quence of end-effector locations (Fig. 1) and using sliders
to set values for the Effort motion factors (Fig. 2). The
sequence of end-effector locations define a general move-
ment sequence, while the Effort settings describe the de-
sired qualitative nature of the movement. Using inverse
kinematics, we compute postures for an articulated figure
by determining the position and orientation of the limbs
from the specification of end-effector locations. Since in-
verse kinematics does not specify how a figure achieves a
computed posture or changes between a series of postures,
we are able to modify the in-between postures. Rather than
defaulting to a standard interpolation method, we use the



Effort settings to determine how to generate the in-betweens
(as briefly described above). EMOTE captures a wide range
of expressive movements, provides an easy-to-use interface,
and features interactive editing.

Figure 1. Interface for Setting Keypoints

Figure 2. Effort Editor

As an example, we used the same five goal keypoints
(Fig. 3) to generate animations for the Space and Weight
Effort Elements (Fig. 4 and Fig. 5).

Effort provides a systematic method for specifying ex-
pression. While an animator could conceivably control the
individual lowest level degrees-of-freedom independently,
the advantage of an Effort-based interface is in organiz-
ing the whole set around four meaningful high-level scales.
Varying the intensities of the Effort Elements and combin-
ing different elements produce a rich language for expres-
sive movements.

1 2

3 4 5

Figure 3. End-Effector Keys for an Example
Movement Sequence

3 Animating Attention

Synthetic humans should exhibit the appropriate looking
or attending behaviors relevant to the activities they are en-
gaged in. Since gaze is significant in communication and
behavioral representation, random or uncontrolled looking
behavior is both misleading and disconcerting. Charac-
ters for which motion alone is animated while gaze re-
mains fixed appear robot-like or mechanical. Also, real-
time performance is necessary for interactive simulation,
pedagogy, games and 3D chat. Avatars in cyber commu-
nities should respond to events such as someone entering a
virtual chat room or responding to objects in their path just
as real participants might do (they will either acknowledge
the presence of an individual, alter their motion to avoid
an obstacle and sometimes fail to notice an event because
their attention is otherwise engaged). The STEVE system
from the Information Sciences Institute makes good use of
a pedagogical agent with attention capabilities [16]. Other
simple attention models have been used for conversational
agents [8, 35].

Given a high level script (possibly interactive) that an
agent should follow, how do we animate details of the script
with the appropriate behavior? The mapping between motor
tasks and the corresponding motion is well understood, but
attending behavior is often not specified and is emergent:
where an agent looks changes due to interactions between
simultaneous tasks and in response to the dynamics of the
environment. Further, motor actions may be modified by
input from the attentional system (e.g., if an agent notices
an object bearing down him, he will step out of the way).

We implement a psychologically-motivated framework,
called AVA (Automated Visual Attending) [10], in which
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Figure 4. Every Fifth Frame from Animation of Indirect and Direct Efforts (ordered left to right, top to
bottom)
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Figure 5. Every Fifth Frame from Animation of Light and Strong Efforts (ordered left to right, top to
bottom)



simultaneously active gaze behaviors compete to direct an
animated agent’s line of sight or visual attention. Deliber-
ate behaviors, known in the cognitive psychology literature
as endogenous [43], are associated with broad categories
of motor and cognitive activity. Involuntary behavior, indi-
cating attentional capture by exogenous effects [17, 12], is
implemented in AVA as a peripheral motion sensor. Since
humans are not constantly monitoring task related objects
(for example, an agent does not continuously look at his
destination or the ground in front of him while walking to a
goal), we associate memory uncertainty thresholds with cer-
tain classes of monitoring activities, of which locomotion
is a specific example. Such activities require glancing at
specific objects or locations when the memory uncertainty
limit for a task object’s state is reached [24]. In the ab-
sence of demands from deliberate or exogenous effects, we
implement a type of idling behavior known as spontaneous
looking [18].

When engaged in several simultaneous tasks or in the
presence of exogenous distractors, an agent’s performance
will degrade by increasing response time to deliberate ac-
tivity targets [13, 29]. AVA recognizes increasing cognitive
load (since the number and identity of objects that require
attention are maintained) and animates time to complete eye
movements accordingly.

Since agent animation in 3D chat or networked virtual
games is of necessity unscripted and immediate, our system
builds behaviors that query the graphics scene graph when-
ever possible. In order to sense peripheral motion, for exam-
ple, rather than use a vision processing or optic flow filter,
we instead determine those objects that fall into a charac-
ter’s peripheral field of view and which have moved inter-
frame (we can do this by determining the location of figures
that are visible to an agent, fall into the periphery and then
query the location of such figures in successive frames). In
the absence of any task information, we employ a simpli-
fied image processing technique modified from vision ap-
proaches [19, 37].

3.1 Arbitration Mechanism

An arbitrating process called the Gazenet (Fig. 6) de-
termines where an agent looks by selecting from the three
levels of behavior: deliberate, exogenous and idling. Two
queues are maintained: an IntentionList that stores sites or
objects that need to be attended due to the demands of cur-
rent activities and a Plist that indicates objects in agent’s
peripheral field of view that are moving. When both queues
are empty, a spontaneous looking or idling behavior is acti-
vated. Behaviors are implemented in our technique as par-
allel, executing finite state machines [36].

Fig. 7 illustrates AVA’s architecture. Users enter task re-
quests as text input. A task manager process for each agent

consumes such requests and generates the appropriate eye
gaze or looking behaviors for an action (some activities such
as walking and monitoring may be requested in parallel).
The motions which correspond to motor tasks are also gen-
erated. When the memory uncertainty threshold for a mon-
itoring activity is reached, the corresponding eye behavior
adds relevant sites to an Intentionlist. (E.g., the locomo-
tion eye behavior will add the goal destination or ground at
particular intervals indicating that those locations should be
attended). A peripheral motion sensor behavior is active for
each agent and updates the Plist as needed.

Examine
PList

Examine
Intention

List

Do
Spontaneous
LookingLook at

Task Related
Site

Look at
Peripheral

Event

Examine
PList

empty

empty

with
probability

D

with
probability

1 - D

empty

Sample
Irrelevant
Stimuli?

yes

no

!empty(IntentionList)
or !empty(PList)A:

A:

A:

*

*: Time to complete
look may be function
of IntentionList length,
Plist length(if in divided
attention mode)

Figure 6. GazeNet

3.2 Deliberate Behaviors

The following behaviors, reflecting endogenous activity,
are implemented in AVA and add objects, locations or rela-
tive angles to IntentionList.

1. Visual Search – We model visual search by first de-
termining the angle between the center of fixation and
the target. We generate a sequence of intermediate po-
sitions (visual angles) that move the eye ¿from its cur-
rent position to the target location. If the target is not
present in the environment or occluded by another ob-
ject, a sweep of the field of view is performed [30].

2. Visual Tracking – An agent periodically (with high un-
certainty) glances at the tracked target. If the target
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passes behind an occluding figure, AVA calculates the
estimated reappearance location (based on the last per-
ceived target heading).

3. Monitoring Behaviors Monitoring tasks (locomotion
being a general case) use uncertainty thresholds [24]
that relate how often a signal, event, or goal should be
glanced at in order to maintain an accurate view of the
signal’s state in memory. When the uncertainty thresh-
old for a given monitoring task is reached in AVA, the
relevant site is added to IntentionList.

While walking, for example, an agent in under AVA
control looks toward the horizon or destination and oc-
casionally glances at the ground [34] . This is an exam-
ple of a monitoring task with low uncertainty thresh-
olds.

4. Limit Monitoring Monitoring may also be associated
with limit conditions [24]. As a signal’s state ap-
proaches a critical or cautionary level, it will occasion
more frequent eye fixations. For example, when cross-
ing the road, an agent will more frequently glance at
the light or crossing signal if it is yellow rather than
green.

5. Reach and Grasp The eye is supposed to establish tar-
geting for the hand [1]. When initiating a reach and
grasp motion, we generate eye movement toward the
relevant grasp site by adding it to IntentionList.

3.3 Involuntary Behaviors

A motion sensor net continuously checks the environ-
ment for objects that change position between frames. Such
objects are added to PList if they fall within an agent’s pe-
riphery. If a moving object is noticed by the agent and its
velocity and heading indicate a likely collision, deliberate
visual tracking is performed and locomotion is updated or
activated (e.g., to alter speed or heading). A distractabil-
ity parameter is set in the simulation indicating likelihood
of noticing peripheral motion while consumed in delib-
erate activity. Such a parameter tends to be age depen-
dent and may also reflect impairments in oculomotor con-
trol [15, 21].

3.4 Idling Behavior

In the absence of a specific goal or task, attention follows
patterns of spontaneous looking [18]. Attention is drawn to
items in the environment that are likely to be informative
or significant. Psychologists argue this is due to a need to
reduce uncertainty about our surroundings.

Since we wish to generate real-time eye behavior, we
use a simplified novelty measure. AVA copies a 1000x400
snapshot of the agent’s field of view into a pixel buffer. We
select those pixels whose color values are the furthest from
their neighbors in RGB space. We convert the location of
these pixels back into 3D world by inverting and applying
the graphics pipeline rendering transforms.

Figure 8 shows rays intersecting those locations in an
agent’s field of view that are the most locally conspicuous.

4 Discussion

We have seen that Effort, as defined by Laban Movement
Analysis, provides a systematic method for specifying ex-
pression. Further, varying the intensities of the Effort ele-
ments and combining different elements produce a rich lan-
guage for expressive movements that cleanly and robustly
fits into a key pose framework. The resulting lower dimen-
sional parametric controls are not only “intuitive”: they are
validated by decades of movement analysis and refinement
that provides evidence for both movement coverage and de-
scriptive power. The next step is connecting these Efforts
to a representation of the character’s inner emotion and per-
sonality states.

With the attention control, we see that tasks and the ex-
ternal world impose both voluntary and involuntary patterns



Figure 8. Spontaneous Looking - Rays Inter-
sect Features with Local Contrast

of eye movements. As several tasks are simultaneously at-
tempted, performance degrades. Peripheral events capture
attention when the agent is engaged in a task which requires
diffuse attentiveness (e.g., visual search or divided atten-
tion). In the absence of tasks or peripheral stimuli, atten-
tion follows patterns of spontaneous looking. All of these
effects are mediated by human cognitive principles and em-
pirical models. Their internal parameters are psychologi-
cally meaningful, they are accessible and may be “tweaked”
for an individual, and they automatically produce human-
like behaviors.

In other work not described here, our animation philos-
ophy has been applied to face animation [28] and is being
applied to human locomotion [14]. To extend this philoso-
phy to complete human motion, we are examining parame-
terized motion capture [7].

One of our long-term objectives is producing real-time
animations from natural language instructions [3, 41]. We
are modeling the scope and richness of action expression
with a Parameterized Action Representation (PAR) [2].
Among the semantic features of a PAR are the agent who
will carry out the action and the manner in which it is done.
Different agents will execute a PAR in different ways ac-
cording to their capabilities, personality, and knowledge of
the current situation. Attention plays a major role in initiat-
ing and sequencing the lower level movements of the agent
– movements that do not appear explicitly in the instruc-
tions. Likewise, manner reflects the attitudes and personal-
ity of the agent and its approach to the task. A link between
manner expressions and Effort elements is the next step in
creating individualized agents.

These examples are intended to strengthen the case for
the particular philosophy or paradigm of “human-ness” in

animation. Both Efforts and attention are functioning, real-
time, human character animation tools. As more compo-
nents become integrated into the human model, we expect
the emergence of a new level of animation control. An agent
will have a personality and varying emotional states. Eluci-
dating the connections between these states and the external
Efforts and attentional choices of the agent is the next step.
There is evidence in the scientific literature that these con-
nections have been studied and may therefore be modeled.
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