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ABSTRACT

ALGEBRAIC AND GEOMETRIC PROPERTIES OF BIG MAPPING CLASS

GROUPS

Anschel Schaffer-Cohen

David Futer

This thesis investigates mapping class groups of infinite-type surfaces, also called

big mapping class groups, by studying their actions on certain graphs whose vertices

are arcs and curves on the underlying surface. In particular, we show that the

extended mapping class group of any surface with a finite, positive number of

punctures is isomorphic to the relative arc graph of that surface; that the mapping

class group of any translatable surface is quasi-isometric to that surface’s translatable

curve graph; and that the mapping class group of a sphere minus a Cantor set is

quasi-isometric to that surface’s loop graph.
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Chapter 1

Introduction

You’ll be sort of surprised what

there is to be found

Once you go beyond Z and start

poking around!

Dr. Seuss, On Beyond Zebra

1.1 Surfaces big and small

A surface is a 2-manifold, i.e. a topological space locally homeomorphic to the

Euclidean plane. For the purpose of this work, we also assume that a surface is

Hausdorff, separable, and orientable. The first two conditions exclude examples

generally thought of as pathological—the plane with two origins, or an interval

crossed with the long line. Non-orientable surfaces are somewhat more socially

acceptable, but we follow the tradition in low-dimensional topology of limiting our
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Figure 1.1: Compact surfaces of genus 0, 1, and 2.

study to orientable manifolds, with the non-orientable case set aside for further

investigation.

Compact surfaces admit an extremely simple classification.1 Namely, a compact

surface is completely classified by its genus; see Figure 1.1. We might also want to

puncture our surface, in the following sense. If we remove finitely many points from

a compact surface, as in Figure 1.2, the resulting surfaces are “almost compact”,

in that we get our compact manifold back after adding finitely many points. This

motivates the following definition.

Definition 1.1.1. A surface Σ has finite type if there is a compact surface Σ′ and a

(possibly empty) finite set P ⊆ Σ′ such that Σ is homeomorphic to Σ′ \ P .

Note that we can classify such a surface by giving two non-negative integers: the

genus of the surface Σ′ and the size of the set P . Two equivalent definitions of finite

1It’s not immediately obvious who to cite here. Gallier and Xu [GX13] credit Möbius [Mö61]

with the initial classification, and Brahana [Bra21] with the first “rigorous proof”—I have not

independently verified this claim. David Futer, meanwhile, recommends I refer to Conway’s ZIP

proof, as described by Francis and Weeks [FW99]. In any case, the classification is well-known and

straightforward.
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Figure 1.2: Some punctured surfaces.

type, which may help the reader’s intuition, are that

• a surface has finite type if and only if it deformation retracts onto a finite cell

complex;

• a surface has finite type if and only if is homeomorphic to an open disk or an-

nulus or if it admits a complete, finite-volume, constant-curvature Riemannian

metric; and

• a surface has finite type if and only if its fundamental group is finitely generated.

Surfaces that do not have finite type are said to have infinite type—some examples

of infinite-type surfaces are given in Figure 1.3. Note however that when trying to

give “examples” of infinite-type surfaces, we run into the same problem that plagues

discussions of any uncountable collection: there are too many of them out there. The

collection of infinite-type surfaces that can be described is of course countable. In

particular, the surfaces we explicitly draw, name, or even comprehend will inevitably

be more regular in structure than those we do not. Thus our theorems need to
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Figure 1.3: Some infinite-type surfaces.

account for a level of weirdness that is present in “nearly all” infinite-type surfaces,

but that will never appear in our examples.

The classification of these surfaces has a bit more to it than just counting genus

and punctures. We start by defining the space of ends of a surface.

Definition 1.1.2. Given a surface Σ, an end of Σ is the equivalence class of a nested

sequence of connected subsurfaces S1 ⊇ S2 ⊇ · · · of Σ, each with compact boundary

and with the property that for any compact subsurface K ⊆ Σ, K ∩ Sn = ∅ for high

enough n. Two such sequences S1 ⊇ S2 ⊇ · · · and T1 ⊇ T2 ⊇ · · · are equivalent if

for every n ∈ N there exists m ∈ N such that Tm ⊆ Sn and vice versa.
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An end x given by a sequence S1 ⊇ S2 ⊇ · · · is said to be accumulated by genus

if every Sn has positive genus. Otherwise x is said to be planar.

The space of ends of Σ, written E(Σ), is a topological space whose points are

the ends of Σ and whose basic open sets correspond to subsurfaces S ⊆ Σ with

compact boundary. An end S1 ⊇ S2 ⊇ · · · of Σ is contained in the basic open set

corresponding to S if Sn ⊆ S for high enough n.

By construction, E(Σ) is compact, separable, and totally disconnected—in other

words, it is homeomorphic to a closed subspace of a Cantor space. The set of ends

accumulated by genus is written EG(Σ) and is always a closed subspace of E(Σ).

We normally think of (E,EG) as a pair, and call two pairs (E,EG) and (E ′, E ′
G)

homeomorphic if there exists a homeomorphism φ : E → E ′ such that φ(EG) = E ′
G.

2

With this data in hand we can move on to the classification. This claim was first

stated by Kerékjártó [Ker23] and was proved by Richards [Ric63].

Theorem 1.1.3 (The principal result of [Ric63]). An infinite-type surface is classified

by its genus (if finite), its space of ends E, and the subset EG ⊆ E of ends accumulated

by genus. What’s more, any homeomorphism of the pair (E,EG) extends to a

homeomorphism of the underlying surface.

Note that the genus of a surface is finite if and only if EG is empty.

2Note that this is a stricter condition than “E is homeomorphic to E′, and EG is homeomorphic

to E′
G”.
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1.2 Mapping class groups

One way that mathematicians—and especially group theorists—study an object is

via its symmetries. For a topological object like a surface, that means looking at the

group of homeomorphisms, usually written Homeo(Σ). In our case, when the surface

is orientable, we might concentrate on the group of orientation-preserving home-

omorphisms, Homeo+(Σ), which is a subgroup of Homeo(Σ) with index 2. Either

group can be endowed with the compact-open topology, giving us an unreasonably

large3 topological group with many path-components.

A path in Homeo+(Σ) is a continuous one-parameter family of homeomorphisms—

that is, an isotopy. Thus two homeomorphisms are in the same path-component

if and only if they are isotopic,4 and Homeo0(Σ), the path-component of the iden-

tity, is the subgroup of homeomorphisms isotopic to the identity. This subgroup

is closed and normal, so we can quotient by it to get the mapping class group

MCG(Σ) := Homeo+(Σ)/Homeo0(Σ),
5 which we can think of as the group of

orientation-preserving homeomorphisms of Σ, considered up to isotopy. If we do the

same thing with Homeo(Σ) instead of Homeo+(Σ), we get the extended mapping

class group MCG∗(Σ), of which MCG(Σ) is an index-2 subgroup. We call the

3For instance, Homeo+(Σ) has infinite covering dimension.
4Thanks to the work of Epstein [Eps66], every homotopy on a surface can be promoted to an

isotopy. Thus two homeomorphisms are also in the same path-component if and only if they are

homotopic, and we can use the concepts of homotopy and isotopy largely interchangeably.
5Some algebraic topologists might recognize this quotient construction as π0(Homeo+(Σ)).
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Figure 1.4: A Dehn twist on an annulus.

mapping class group of an infinite-type surface a big mapping class group.

The mapping class group of a surface thus tells us what kinds of topological

symmetries the surface has, ignoring those that arise from isotopy. In addition to

the intrinsic value of learning more about the surface, there are also applications

elsewhere, for instance in Teichmüller theory, dynamics, and the construction of

3-manifolds.

It can be surprisingly difficult, when first encountering the idea of mapping

class groups, to actually picture some interesting mapping classes concretely. The

standard example of a mapping class is a Dehn twist, which we construct as follows.

Pick a simple closed curve α on the surface Σ. Since Σ is orientable, α has a tubular

neighborhood homeomorphic to an annulus. Let’s call this neighborhood A and

identify it with the annulus {reiθ ∈ C | 1 ≤ r ≤ 2}.

Notice that the map reiθ 7→ rei(θ+2π(r−1)), illustrated in Figure 1.4, restricts to

7



Figure 1.5: A Dehn twist about the curve α on a surface.

the identity on the boundary of A but is not homotopic to the identity on the full

annulus. Thus we can define a map Tα, called the Dehn twist about the curve α,

which is the identity on Σ \ A and takes reiθ to rei(θ+2π(r−1)) on A; see Figure 1.5.

As long as α does not bound a disk or a once-punctured disk on Σ, this Dehn twist

will not be homotopic to the identity, so Tα represents a nontrivial mapping class.

When the surface Σ has finite type, Homeo0(Σ) is both closed and open in

Homeo+(Σ), and so the quotient MCG(Σ) is discrete and thus is normally not

thought of as a topological group. When Σ has infinite type, on the other hand,

Homeo0(Σ) is closed but not open: fix a compact exhaustion K1 ⊆ K2 ⊆ K3 ⊆ · · ·

of Σ, and for each i ∈ N let φi be a homeomorphism that is the identity on Ki but

is not isotopic to the identity on Σ—say, a Dehn twist about a curve disjoint from

Ki. Then the sequence φi converges to the identity in Homeo+(Σ) but no φi is in

Homeo0(Σ), demonstrating that Homeo0(Σ) is not open. In particular, this means

that the quotient MCG(Σ) is topologically interesting, which will turn out to be

important.
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1.3 Graphs of curves and arcs

Geometric group theorists generally study groups via their actions by isometries on

metric spaces. One large class of metric spaces that mapping class groups can act

on is that of graphs of curves or arcs. For our purposes, a curve is the isotopy class

of an embedded circle in Σ, ignoring orientation. Likewise, an arc is the isotopy

class of an embedded line in Σ, again ignoring orientation. If both ends of the line

limit to the same end of Σ, the arc may be called a loop. We generally do not

consider homotopically trivial or peripheral cases, i.e. curves that bound a disk or a

once-punctured disk, or arcs that bound a monogon. The phrases “all curves” and

“all arcs” implicitly exclude these cases.

A graph of curves or arcs is a simplicial graph whose vertex set is some subset of

the set of curves or arcs on the surface. Usually, the vertex set and the edge relation

are chosen so that the mapping class group acts simplicially on the graph.6 The

most commonly encountered graphs of curves or arcs are

• the curve graph C(Σ), where the vertex is the set of all curves, and two

vertices are connected by an edge if their corresponding curves have disjoint

representatives; and

• the arc graph A(Σ), where the vertex set is the set of all arcs whose ends

limit to punctures, and again two vertices are connected by an edge if their

corresponding arcs have disjoint representatives. Note that this is only defined

6In the case of infinite-type surfaces, we may also want to ensure that the action is continuous.
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if Σ has at least one puncture.

Both of these are well-studied for finite-type surfaces, and have come under increasing

scrutiny in the infinite-type case. Broadly speaking, we can study the action of the

mapping class group on such a graph from two angles. Algebraically, we can ask

about the relationship between MCG(Σ) and the automorphism group of a graph it

acts on; and geometrically, we can ask what the action of MCG(Σ) on the graph as

a metric space tells us about the geometry of the group itself.

1.4 Algebraic properties

Since MCG(Σ) is acting on a graph, it is natural to ask about the induced homomor-

phism from the mapping class group to the automorphism group of the graph. It is

slightly too much to hope that these groups be isomorphic, because an orientation-

reversing homeomorphism of Σ, though excluded from MCG(Σ), will induce an

automorphism of any reasonable graph of curves or arcs. Thus we focus here on the

extended mapping class group MCG∗(Σ), which includes those orientation-reversing

maps. In the finite-type case, Ivanov [Iva97], Korkmaz [Kor99], and Luo [Luo00]

showed that MCG∗(Σ) is isomorphic to Aut(C(Σ)) for all but a few surfaces, and

Irmak and McCarthy [IM10] showed that MCG∗(Σ) is isomorphic to Aut(A(Σ))

whenever that graph is defined.

When Σ has infinite type, Hernández Hernández, Morales, and Valdez [HHMV18]

and Bavard, Dowdall, and Rafi [BDR18] showed that MCG∗(Σ) is still isomorphic

10



to Aut(C(Σ)). The analogous result for the arc graph remained open.

Following Bavard [Bav16] and Aramayona, Fossas, and Parlier [AFP17], we focus

on the case of an infinite-type surface Σ with a finite, non-empty set of punctures P ,

and consider the relative arc graph A(Σ, P ), where vertices are arcs that limit to

the punctures in P . If P is the set of all punctures on Σ, the extended mapping

class group MCG∗(Σ) has a well-defined action on A(Σ, P ). The goal of Chapter 2

is to show that this action does in fact induce an isomorphism as in the finite-type

case. Theorem 2.1.2 consists of this result. On the way, we prove Theorem 2.1.1,

which focuses on the special case of a surface with a single puncture, or equivalently

a single marked point.

1.5 Geometry of groups

It may seem strange, from an outsider’s perspective, to ask about the geometric

properties of groups. After all, groups do not seem to be inherently geometric

objects. But groups can certainly act on geometric objects; and if some property

holds for every action of a particular group on every geometric object, it makes

sense to think of that as a property of the group itself.

Consider, as a first example, a group G, with finite generating set S, acting

on a metric space X with distance function d. Pick a point x0 ∈ X, and let

k = maxs∈S d(x0, s · x0). Then given g ∈ G, written as g = s1s2 · · · sn with each

si ∈ S, we can immediately see that d(x0, g ·x0) ≤ kn. Put more formally, and using

11



the notation |g|S for the minimal word-length of the group element g with respect

to the generating set S, we can say that for any x0 ∈ X, there exists a k ≥ 1 such

that for all g ∈ G,

d(x0, g · x0) ≤ k|g|S.

This strongly suggests the use of |·|S as the basis for a metric on the group G itself.

Remembering that, for a group action, d(g · x0, h · x0) = d(x0, g
−1h · x0), we define

dS(g, h) = |g−1h|S, and now our previous statement takes on an even more geometric

flavor. That is, for any x0 ∈ X, there exists a k ≥ 1 such that for all g, h ∈ G,

d(g · x0, h · x0) ≤ kdS(g, h).

Or in other words, the orbit-map g 7→ g · x0 is k-Lipschitz.

To put a lower bound on d(g · x0, h · x0) we need to impose some restrictions

on the action, for instance to ensure that it is not trivial. To that end, we call

the action of a group G on a metric space X properly discontinuous if, for every

bounded7 set A ⊆ X, the set {g ∈ G | g · A ∩ A ̸= ∅} is finite. In this case, we can

chose constants k ≥ 1 and C ≥ 0 so that

d(g · x0, h · x0) ≥
1

k
dS(g, h)− C.

7Most definitions use compactness here instead of boundedness. For proper metric spaces these

conditions are equivalent, but many metric spaces that we care about are not proper—curve graphs,

for instance, have infinite valence. For that reason we focus on boundedness, which is a stronger

condition than compactness in a non-proper metric space.
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Putting this all together gives us the famous lemma of Schwarz8 [Š55] and Mil-

nor [Mil68].

Lemma 1.5.1 (Schwarz-Milnor). Let G be a group generated by a finite set S, acting

properly discontinuously on a metric space X. Then for any x0 ∈ X, there exist

constants k ≥ 1, C ≥ 0 such that for any g, h ∈ G,

1

k
dS(g, h)− C ≤ d(g · x0, h · x0) ≤ kdS(g, h) + C.

The inequality in Lemma 1.5.1 feels like an equivalence relation, but it is not

symmetric: the orbit G · x0 might cover only one small region of X, making an

inverse relationship impossible. To close this gap, we can insist that the orbit G · x0

get close to every point of X. In other words, we say that the action is co-bounded9

if there is some bounded set A ⊆ X such that
⋃

g∈G g · A = X. Finally, we tie this

up by introducing a name for this equivalence relation.

Definition 1.5.2. Given two metric spaces X and Y , a map f : X → Y is a

quasi-isometric embedding if there exist constants k ≥ 1, C ≥ 0 such that for any

x1, x2 ∈ X,

1

k
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ kdX(x1, x2) + C.

8After [Š55] was published in the Soviet Union in 1955, English citations used a number of

different transliterations of the author’s Russian-transcribed Yiddish name, leading to a profusion

of spellings and pronunciations in English-language references. Since that time, however, Albert

Schwarz has immigrated to the United States, and he consistently spells his name in English as

used here.
9Again, other definitions usually use co-compactness.
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If in addition every point of Y is within bounded distance of the image f(X), then

f is a quasi-isometry and the spaces X and Y are quasi-isometric.

Note that quasi-isometry is an equivalence relation. We can now write a shorter

and slightly stronger version of Lemma 1.5.1.

Lemma 1.5.3 (Schwarz-Milnor, version 2). Let G be a group generated by a finite

set S and equipped with the metric dS, acting properly discontinuously and co-

boundedly on a metric space X. Then for any x0 ∈ X, the orbit map g 7→ g · x0 is a

quasi-isometry.

Crucially, this lets us avoid a problem that was glossed over before. The metric

dS obviously depends on the choice of a generating set S, and thus is not a property

of the group itself per se. But given two finite generating sets S and T , the conditions

of Lemma 1.5.3 apply to the action of G on itself by left-multiplication. Taking G as

the group, S as the generating set, G with dT as the metric space, and the identity

as x0, we see that the identity map from G to itself (but changing generating sets) is

a quasi-isometry. Thus we can say that a finitely generated group has a well-defined

metric up to quasi-isometry.

1.5.1 Topological groups and coarse boundedness

The previous section was written from the perspective of finitely generated groups,

and this is the angle from which geometric properties of this kind have traditionally

been studied. Indeed, the mapping class group of a finite-type surface was shown
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by Dehn [Deh38] to be generated by a finite collection of Dehn twists, so it makes

sense to talk about the geometry of a classical mapping class group in this sense.

Big mapping class groups, on the other hand, are uncountable and therefore

definitely not finitely generated. On the other hand, they have a topological structure

that their finite-type analogues lack. To what extent can we replicate the classical

results in this new environment of uncountable, topological groups?

The key insight, due to Rosendal [Ros18], is that the finiteness of the generating

set in Lemma 1.5.3 and its antecedents is largely a means to an end. The only

property of finiteness actually used is the fact that k = maxs∈S d(x0, s · x0) exists.

Indeed, for any generating set S, if we know that d(x0, s · x0) ≤ k for all s ∈ S, it is

still true that

d(g · x0, h · x0) ≤ kdS(g, h)

for all g, h ∈ G. This inspires a new definition, which can replace finiteness in many

theorems of geometric group theory.

Definition 1.5.4. A subset A of a topological group G is coarsely bounded if for

every continuous action of G on a metric space X and every x0 ∈ X, the set

A · x0 = {a · x0}a∈A is bounded in X.

Note that any finite set is coarsely bounded, as indeed is any compact set, so this

framework forms an expansion of the existing literature about finitely or compactly

generated groups. In particular, by arguments analogous to those above we can see

that two different coarsely bounded generating sets for the same group give rise
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to quasi-isometric word metrics, so we can talk rigorously about the “geometric

properties” of such groups.

Definition 1.5.4 may at first glance seem very hard to apply due to the broadness

of the quantification over “every continuous action”. How do we actually prove that

a (non-compact) set is coarsely bounded? The most useful tool here is Lemma 3.2.1,

which gives a more concrete group-theoretic condition for coarse boundedness

assuming the group is Polish. Thankfully, big mapping class groups are in fact

Polish, and we use this lemma extensively.

1.6 Geometric properties

Sadly, not all big mapping class groups admit coarsely bounded generating sets.

Mann and Rafi [MR19] classified those that do, but did not provide any further

insight into the geometric properties of these groups. Indeed, mapping class groups—

and especially big mapping class groups—can be difficult to picture. The traditional

solution to this problem has been to study not the mapping class group itself, but its

action on a metric space, often a graph of curves or arcs. Masur and Minsky [MM00]

showed that the word length in the mapping class group of a finite-type surface can

be estimated using the action of that group on a collection of curve graphs, thus

making it possible to study the geometry of the mapping class group by focusing

entirely on the geometry of these graphs.

In the infinite-type case, we might hope to do even better. Ideally, if the action
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of the mapping class group on some graph of curves or arcs satisfied conditions

similar to those of Lemma 1.5.3, then we would have a true quasi-isometry, and all

the geometric information about the mapping class group would be contained in the

geometry of that one graph. Crucially, all graphs of curves and most10 graphs of

arcs are countable, unlike the groups that are acting on them, which makes them

much simpler to work with.

To this end, we introduce Lemma 3.2.2, which is a simplified version of Lemma

1.5.3 for the case of groups acting vertex-transitively on graphs in the setting of

coarse boundedness. With this tool in hand, we prove two new quasi-isometries.

Section 3.3 introduces a class of translatable surfaces, and Section 3.4 defines a

graph of curves, the translatable curve graph, that can be built for any translatable

surface. Finally Theorem 3.5.3 proves two important relationships between the

mapping class group and the translatable curve graph. First, that as we had hoped

the mapping class group of a translatable surface is in fact quasi-isometric to that

surface’s translatable curve graph. And second, that this is the only way a mapping

class group can be quasi-isometric to a graph of curves. That is, if the mapping

class group of a surface is quasi-isometric to any graph of curves, that surface must

be translatable.

This result is in some sense a classification, but it still leaves us to wonder about

10Things can start to get uncountable if, for instance, we let our arcs limit to ends that are not

punctures, or wrap around forever without limiting to an end at all. The graphs of arcs described

here are all countable, however, as their arcs do limit to punctures.
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the geometry of translatable curve graphs themselves. A less general but more

immediately fruitful result comes in Section 3.6, which studies the plane minus

a Cantor set, also called the punctured Cantor tree. As a surface with a single

puncture, this is a case where the loop graph is well-defined, and Theorem 3.6.5

shows that the mapping class group of this surface is in fact quasi-isometric to its

loop graph.

This result is not a full classification—it is not clear at present whether there

are other surfaces whose mapping class groups are quasi-isometric to loop or arc

graphs—but the loop graph, unlike the translatable curve graph, is already somewhat

well-studied. In particular, Bavard [Bav16] showed that it is δ-hyperbolic, and Bavard

and Walker [BW18] described its Gromov boundary. Since δ-hyperbolicity and the

homeomorphism type of the Gromov boundary are both quasi-isometry invariants,

these results combine with Theorem 3.6.5 to tell us that this mapping class group is

itself δ-hyperbolic, and to describe its Gromov boundary. What’s more, we can also

use Theorem 3.6.5, along with work of Cornulier and de la Harpe [CdlH16], to show

that this mapping class group has a coarsely bounded presentation; that is, a group

presentation in which the generating set is coarsely bounded and the relators have

bounded length.
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Chapter 2

Automorphisms

Alguien observará que la

conclusión precedió sin duda a

las “pruebas”. ¿Quién se resigna

a buscar pruebas de algo no

créıdo por él o cuya prédica no le

importa?

Jorge Luis Borges, “Tres

versiones de Judas”

2.1 Introduction and Main Result

The goal of this chapter is to prove the isomorphisms stated in Section 1.4 between

the extended mapping class group MCG∗(Σ) of a surface Σ and the loop or arc

graph on Σ. The material here is lightly adapted from [SC22].
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Fix a basepoint p ∈ Σ. For the purposes of this chapter, we consider a loop

in Σ based at p to be an unoriented simple closed curve in Σ starting an ending

at p, considered up to isotopy relative to p. The loop graph L(Σ, p) of Σ is the

graph whose vertex set is the set of all such loops, with vertices connected by an

edge if they have representatives intersecting only at p. The group that acts on

this graph is the extended based mapping class group MCG∗(Σ, p), which is defined

analogously to the extended mapping class group introduced in Section 1.2 but

with all homeomorphisms and isotopies fixing the basepoint p. By construction,

MCG∗(Σ, p) acts on L(Σ, p), giving a homomorphism MCG∗(Σ, p) → Aut(L(Σ, p)).

Theorem 2.1.1 will show that this is in fact an isomorphism.

Theorem 2.1.1. Given an infinite-type surface Σ and a basepoint p ∈ Σ, the map

MCG∗(Σ, p) → Aut(L(Σ, p)) induced by the action is an isomorphism.

Irmak and McCarthy [IM10] provide a successful program for proving this

theorem in the finite-type case:

1. Fix a maximal set of disjoint loops, called a triangulation, and observe that

its complementary regions are all triangles.

2. Show that some important local properties—three loops bounding a triangle,

two triangles being adjacent, etc.—can be defined in terms of the loop graph

and are therefore preserved by automorphisms of that graph. We use some of

these results as Facts 2.4.1 and 2.4.2.
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3. Use these local properties to construct a homeomorphism inducing a given

transformation of our fixed triangulation.

4. Show that a homeomorphism which fixes a triangulation actually fixes the

entire loop graph. We use this result as Fact 2.4.3.

In our extension to the infinite-type case we have an advantage, a disadvantage,

and a trick. The advantage is of course that we can depend on the existing result for

finite-type surfaces. The disadvantage is that “triangulations” in the infinite-type

setting can be much more exotic, as seen in Section 2.2. They will in fact have some

complementary regions that are not actually triangles. The trick is to notice that

Irmak and McCarthy’s proof is more general than the result requires: they start by

fixing an arbitrary triangulation, but for their proof (and ours) it is sufficient to follow

this program with any single triangulation. Thus we can construct a particularly

useful triangulation for the specific purpose of building our homeomorphism.

In Section 2.5, we generalize Theorem 2.1.1 to the relative arc graph A(Σ, P ) as

defined in Section 1.4 with respect to a finite set of punctures P . The extended map-

ping class group MCG∗(Σ, P ) of (possibly orientation-reversing) homeomorphisms

stabilizing (but not necessarily fixing) the set P acts on A(Σ, P ). Then we can

prove the following:

Theorem 2.1.2. Given an infinite-type surface Σ and a finite set P of punctures of

Σ, the map MCG∗(Σ, P ) → Aut(A(Σ, P )) induced by the action is an isomorphism.
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There are two special cases to keep in mind: first, if P consists of a single

puncture p, then A(Σ, P ) = L(Σ∪{p}, p), so Theorem 2.1.2 really is a generalization

of Theorem 2.1.1. Second, if Σ has finitely many punctures, then P can contain

all of them and so MCG∗(Σ, P ) = MCG∗(Σ) and we have a bona fide action of the

mapping class group.

The idea of the proof of Theorem 2.1.2 will be to reduce it to that of Theorem 2.1.1

by picking a puncture p ∈ P and considering L(Σ ∪ {p}, p) as an induced subgraph

of A(Σ, P ). The main hurdle will therefore be to prove that an automorphism of

the arc graph preserves properties like “this arc is actually a loop” and “these two

loops are based at the same puncture”.

2.2 Triangulations of infinite-type surfaces

Irmak and McCarthy [IM10] define a triangulation as a maximal set of disjoint

arcs, or equivalently as a set of arcs whose complementary regions are all triangles.

Hatcher [Hat91], allowing for punctures not in P , observes that the complementary

regions of a triangulation may also include punctured monogons. In the infinite-type

case triangulations are considerably more exotic, as we shall see. So we simply define

a triangulation11 to be a maximal clique in A(Σ, P ). The following facts are then

immediate:

11This somewhat misleading name is (we hope) justified by the fact that it is a straightforward

extention of the usage in [IM10] and [Hat91].
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Lemma 2.2.1. Given a set T of arcs and an automorphism f of A(Σ, P ), T is a

triangulation if and only if f(T ) is a triangulation.

Lemma 2.2.2. Any set of disjoint arcs can be extended to a triangulation.

Proof. This follows from Zorn’s Lemma.

A finite-type surface admits countably many triangulations; each triangulation

has the same number of loops depending only on the Euler characteristic of the

surface; and any two triangulations are connected by a finite sequence of elementary

moves, in which an arc α is removed from the triangulation and replaced with

β, where the geometric intersection number ι(α, β) = 1 [Hat91]. An infinite-type

surface, on the other hand, admits uncountably many triangulations by application

of Lemma 2.2.2, each with countably many arcs, and so most pairs of triangulations

will not be connected by elementary moves.

The topology of a triangulation is also interesting in the infinite-type setting:

consider a finite union C of small circles centered at each p ∈ P that intersects each

arc finitely many times. By compactness, there must be points on C that are the

limits of points on distinct arcs of the triangulation. A priori there is no reason

to assume these limit points are contained in the triangulation at all, and so the

triangulation may not be closed—in fact, we conjecture that it never is.

These and other questions about the nature of triangulations in general will not

be studied further in this paper. However, they suggest possible future areas of
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research, and motivate the construction, in the next section, of a special triangulation

to overcome the potential pitfalls of an arbitrary one.

2.3 Building a useful triangulation

For Sections 2.3 and 2.4 we fix an infinite-type surface Σ, a basepoint p, and an

automorphism f : L(Σ, p) → L(Σ, p).

In Section 2.4, we will need a triangulation T of Σ and a corresponding exhaustion

of Σ by compact subsurfaces {Σn}n∈N, with the property that for each n, the

restriction of T to Σn is a triangulation of Σn. Such a triangulation may not a

priori exist, which is why we construct it explicitly in this section. We will start by

building an embedded tree in S ⊆ Σ, called the skeleton of Σ, that has exactly one

infinite branch for each end of Σ.

Fix a pants decomposition12 {Π0,Π1, . . .} of Σ, with p ∈ Π0 and such that⋃n
i=0Πi is connected for each n. Note that, since Σ may have punctures, the holes

in a pair of pants may all be boundary components connected to other pairs of

pants, or one or two of them may be punctures. For the purpose of constructing the

skeleton S we distinguish between four types of pairs of pants: namely, for each Πi

we can ask how many of its boundary components connect to some Πj for j < i. In

our inductive definition of S, we will refer to such a boundary component as already

12By “pants decomposition” I mean a collection of pairwise disjoint subsurfaces of Σ, each

homeomorphic to a pair of pants, such that the closure of the union of these subsurfaces is Σ.
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Figure 2.1: The construction of the skeleton on each type of pair of pants Πi. The

green dot is the basepoint p, and the red curves are pieces of the skeleton.

connected.

In Figure 2.1 we show how to draw the skeleton on each of the four types of pairs

of pants; the first type, with no boundary components already connected, occurs

only for Π0. Note that by construction S is indeed a tree, and its infinite based rays

are in bijection with the ends of Σ; there are also some paths in S that end after a

finite distance, which do not therefore correspond to ends of Σ.

The loops of T will be defined with reference to the skeleton in the following

way: when we draw an arc between two points a and b on the skeleton, such that the

arc that does not otherwise intersect the skeleton, we are indicating the loop that

starts at p, takes the unique nonbacktracking path to the point a, follows the arc to

the point b, and takes the unique nonbacktracking path from b back to p; see Figure

2.2 for some examples. Note that two such arcs, if disjoint, indicate disjoint loops.

We now draw the loops of our triangulation on each pair of pants according to the

arcs pictured in Figures 2.3–2.5. The skeleton in a pair of pants with zero boundary

components already connected is identical to the skeleton in a pair of pants with one
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Figure 2.2: Each arc with endpoints on the skeleton represents a loop based at p.

Figure 2.3: The skeleton and loops on a pair of pants with at most one boundary

component already connected. The first and second figures are homeomorphic; in

the third figure, the skeleton has been contracted to a point so that the triangle

decomposition is more clearly visible.
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Figure 2.4: The skeleton and loops on a pair of pants with two boundary components

already connected. As in Figure 2.3, the first and second figures are homeomorphic;

in the third figure, the skeleton has been contracted to two points.

Figure 2.5: The skeleton and loops on a pair of pants with three boundary components

already connected. As in Figure 2.3, the first and second figures are homeomorphic;

in the third figure, the skeleton has been contracted to three points.
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boundary component already connected, so both of these cases are covered in Figure

2.3, with the other two cases covered in Figures 2.4 and 2.5 respectively. Note that

some of these loops are redundant, as representatives of the same homotopy class

may be drawn on more than one pair of pants.

Although we have defined our loops in terms of arcs with endpoints on S, this is

purely a notational convenience. After this section we will consider only the loops

themselves, and ignore the arcs with which they were defined.

Remark 2.3.1. It turns out, somewhat surprisingly, that we will not need to know

whether T is in fact a triangulation in the sense of Section 2.2. But the reader can

easily verify that it is in fact a maximal set of loops; more importantly, T restricts

to a triangulation on each finite-type subsurface
⋃n

i=0Πi.

2.4 Constructing a homeomorphism

We first note a few facts due to Irmak and McCarthy; keep in mind that loops are

simply a special case of arcs, and the loop graph a special case of the relative arc

graph.

Fact 2.4.1 (Propositions 3.3 and 3.4 of [IM10]). The condition that three arcs

bound a triangle, or that two arcs bound a degenerate triangle,13 is preserved under

automorphisms of the arc graph.

13A degenerate triangle is one where two sides are formed by the same arc. Note that this is only

possible when our arcs go between at least two points, and thus never appears in the loop graph.
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Fact 2.4.2 (Propositions 3.5–3.7 of [IM10]). When two triangles are adjacent (i.e.

share one or two edges) their relative orientations are preserved under automorphisms

of the arc graph.

Fact 2.4.3 (Proposition 3.8 of [IM10]). If a homeomorphism of a finite-type surface

preserves some triangulation up to isotopy, then it induces the identity on the arc

graph of that surface.

The proofs of the first two facts do not depend on the surface being finite-type;

they are based exclusively on local properties of the arc graph. Since our surface may

have punctures, some loops may bound punctured monogons as well as triangles,

and this property will also be preserved:

Lemma 2.4.4. The condition that a loop bounds a punctured monogon is preserved

under automorphisms of the arc graph.

Proof. If a nontrivial loop λ does not bound a punctured monogon, then Σ \ λ has

either at least two ends or at least one handle in each component.14 In either case,

we can draw two disjoint triangles adjacent to λ, which we cannot do if λ does

bound a punctured monogon. Since the property of three arcs bounding a triangle

is preserved by Fact 2.4.1, so is the property of bounding a punctured monogon.

In order to leverage Fact 2.4.3 we will need some finite-type surfaces to which

it can be applied. For this reason, we construct an exhaustion of Σ by finite-type

14There may be one or two components, depending on whether λ is separating.

29



surfaces Σn, with corresponding homeomoprhisms φn from Σn to an appropriate

subsurface of Σ. The natural choice is to let the subsurface Σn ⊆ Σ be the union⋃n
i=0 Πn of the first n pairs of pants. Note that by our choice of pants decomposition,

Σn is connected and contains p.

However, this definition is somewhat unhelpful for the purpose of constructing

φn, because there is no obvious choice for the image φn(Σn)—after all, f will not in

general preserve our pants decomposition. But Σn has a useful alternate definition.

If we let Tn be the set of loops in T contained in Σn, then Σn is also the largest

subsurface of Σ (up to isotopy) filled by the loops of Tn.

We now have a natural choice for the image of φn: since Σn is the largest

subsurface filled by Tn, φn(Σn) should be the largest subsurface filled by {f(λ) | λ ∈

Tn}. We can in fact construct such a map:

Lemma 2.4.5. For n ∈ N, there exists a map φn : Σn → Σ, a homeomorphism

onto its image, such that φn(λ) = f(λ) for each λ ∈ L(Σ, p) supported on Σn. In

addition, these homeomorphisms are compatible: that is, φn+1|Σn
= φn for all n.

Proof. For each n ∈ N, the image of φn will be the largest subsurface filled by

f(Tn) = {f(λ) | λ ∈ Tn}; call this subsurface Ωn. Whenever three loops λ1, λ2, λ3 ∈

Tn bound a triangle in Σ, so do their images f(λ1), f(λ2), f(λ3) by Fact 2.4.1. The

latter triangle is thus included in Ωn and can be the image of the former. When two

such triangles are adjacent, their orientations are preserved by Fact 2.4.2 and so the

homeomorphisms on adjacent triangles can be stitched together after applying some
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isotopy.

When a loop λ ∈ Tn bounds a punctured monogon in Σ, so does f(λ) by Lemma

2.4.4. Then by construction, the punctured monogon bounded by f(λ) is contained

in Ωn, and the two punctured monogons are homeomorphic. This homeomorphism

can be stitched to those above along λ and f(λ).

When a loop λ ∈ Tn is parallel to the boundary of Σn—that is, λ together with

one of the boundary curves of Σn bound an annulus—λ must bound a triangle in T

with at least one side not in Tn. By Fact 2.4.1, f(λ) therefore bounds a triangle in

f(T ) with at least one side not in f(Tn) and so this triangle is not included in Ωn.

Thus f(λ) is parallel to the boundary of Ωn, and we can extend our homeomorphism

to a tubular neighborhood of λ.

Since Σn is made up of tubular neighborhoods of loops in Tn, triangles bounded

by loops in Tn, and punctured monogons bounded by loops in Tn—and likewise for

Ωn and loops in f(Tn)—this algorithm gives a homeomorphism φn : Σn → Ωn. Since

φn(λ) = f(λ) for each λ ∈ Tn, which is a triangulation of Σn, it follows by Fact 2.4.3

that φn(λ) = f(λ) for every λ ∈ L(Σ, p) contained in Σn.

By construction Ωn ⊆ Ωn+1, and the only choices we made in defining our

homeomorphisms were isotopies on the interiors of triangles and punctured monogons.

Thus after an isotopy, φn and φn+1 agree on Σn.

To prove Theorem 2.1.1 we need to combine these partial maps φn, and we also

need to prove injectivity. The following lemma achieves the latter result.
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Lemma 2.4.6. If a homeomorphism φ : Σ → Σ induces the identity automorphism

of Aut(L(Σ, p)) then φ is isotopic to the identity.

Proof. The key insight here is that if φ preserves the isotopy class of each based

loop it must also preserve the isotopy class of each free loop. Then it acts trivially

on the curve graph of Σ, and so by Corollary 1.2 of [HHMV19], φ is isotopic to the

identity.

Corollary 2.4.7. The homomorphism MCG∗(Σ, p) → Aut(L(Σ, p)) is bijective.

Proof. Injectivity follows directly from Lemma 2.4.6.

To prove surjectivity, fix f ∈ Aut(L(Σ, p)), construct {φn}n∈N as in Lemma 2.4.5.

Define φ : Σ → Σ by letting φ(x) = φn(x) for some n where x ∈ Σn. Since the

Σn exhaust Σ and φn agrees with φm wherever both are defined, this map φ is

well-defined. Since it is a homeomorphism on each Σn and the Σn exhaust Σ, it is a

homeomorphism onto its image. And since the Ωn also exhaust Σ, this image is in

fact Σ, so φ : Σ → Σ is a homeomorphism. Thus [φ] ∈ MCG∗(Σ, p), and its image

is f .

2.5 The relative arc graph

The contents of Theorem 2.1.1 can be generalized to the case of the relative arc

graph A(Σ, P ). Recall the definition of the relative arc graph from Section 2.1, where

we noted that that the loop graph L(Σ, p) is simply a special name for the relative
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Figure 2.6: Adding a single arc (shown here in purple) turns a punctured monogon

containing q into a degenerate triangle.

arc graph A(Σ \ {p}, {p}); more generally, if p ∈ P then L(Σ∪ {p}, p) is an induced

subgraph of A(Σ, P ). So for the remainder of this section we pick some p ∈ P and

f ∈ Aut(A(Σ, P )) and let Σ′ = Σ ∪ {p}. This gives an immediate result:

Lemma 2.5.1. The homomorphism MCG∗(Σ, P ) → Aut(A(Σ, P )) is injective.

Proof. A homeomorphism φ : Σ → Σ that induces the identity automorphism on

A(Σ, P ) must also induce the identity automorphism on L(Σ′, p) and so by Lemma

2.4.6 it is isotopic to the identity.

We will now show surjectivity. In Section 2.3, we built a special triangualation T .

In this section, we will instead start with an arbitrary triangulation T ′ in L(Σ′, p)

as described in Section 2.2 and extend it to a triangulation T in A(Σ, P ).

Lemma 2.5.2. If T ′ is a triangulation in L(Σ′, p), then there is a unique extension

of T ′ to a triangulation T in A(Σ, P ).
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Figure 2.7: The image of a degenerate triangle under f

Proof. Consider a puncture q ∈ P \ {p}. Observe that T ′ must include a loop

that bounds a punctured monogon around q—if not, such a loop could be added

to T ′, contradicting maximality. The only way to extend T ′ with an arc having

an endpoint at q is to turn this monogon into a degenerate triangle as in Figure

2.6. Repeating this process for each q ∈ P \ {p} will give the only triangulation in

A(Σ, P ) containing T ′. Call this triangulation T .

Note that each arc of T is either contained in T ′—in which case it is a loop

based at p—or is one of these new arcs, each of which forms two sides of a single

degenerate triangle in T ′. The following lemma shows that this condition holds after

applying the automorphism f .

Lemma 2.5.3. Let T ′ be a triangulation in L(Σ′, p) and T its extension to A(Σ, P )

by Lemma 2.5.2. Then there is a puncture φ(p) ∈ P such that for every loop λ ∈ T ′

based at p, f(λ) is a loop based at φ(p), and for every arc α ∈ T with exactly one

endpoint at p, f(α) has exactly one endpoint at φ(p).
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Proof. Let n = |P |. By construction T has exactly n− 1 degenerate triangles, and

Fact 2.4.1 ensures that f(T ) has the same number of degenerate triangles. Let us

label one such degenerate triangle as in Figure 2.7. Observe that any arc in A(Σ, P )

with an endpoint at q either is f(α) or intersects f(λ). Thus the only arc in f(T )

with an endpoint at q is f(α).

By applying the above argument to each degenerate triangle of f(T ), we find n−1

punctures, each of which is the endpoint of exactly one arc, leaving one puncture

left over. This puncture will be φ(p), and note that in Figure 2.7 the puncture r is

the endpoint of at least two arcs (f(λ) and f(α)) and so r = φ(p).

If α is an arc in T with exactly one endpoint at p, then by construction it is the

doubled edge in a degenerate triangle and so f(α) has exactly one endpoint at φ(p).

All other arcs in f(T ) must have both endpoints at φ(p) because there are no other

punctures in P available. It follows that all other arcs in f(T )—that is, f(λ) for

every λ ∈ T ′—are loops based at φ(p).

We would like φ(p) to be defined independently of our choice of a triangulation T ′

in the statement of Lemma 2.5.3, but this identification is not immediately obvious.

Lemma 2.5.4. For any loop λ ∈ L(Σ′, p), f(λ) is a loop based at φ(p).

Proof. By extending λ to a triangulation in L(Σ′, p) via Lemma 2.2.2, we see by

Lemma 2.5.3 that f(λ) is indeed a loop. If µ ∈ L(Σ′, p) is disjoint from λ, then the

set {λ, µ} can also be extended to a triangulation in L(Σ′, p), which means f(λ) and

f(µ) are based at the same puncture.
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Even if λ and µ are not disjoint, the loop graph is connected (Theorem 1.1

of [AFP17]) and so there is a path λ = λ0, . . . , λk = µ so that each λi and λi+1

are disjoint. Then f(λi) and f(λi+1) are based at the same puncture, and so by

induction are f(λ) and f(µ).

Thus the image of every loop will be based at φ(p), regardless of which triangu-

lation was used to find φ(p) in Lemma 2.5.3.

We now have very nearly all the ingredients necessary to apply the results of

Section 2.4. If φ(p) = p, then Lemma 2.5.4 means f ∈ Aut(L(Σ′, p)) and we can

apply Corollary 2.4.7 directly. If not, we need only a bit more bookkeeping.

Lemma 2.5.5. There exists a homeomorphism φ ∈ MCG∗(Σ, P ) inducing the

automorphism f on A(Σ, P ).

Proof. Let ψ be a homeomorphism of Σ that transposes p and φ(p) while otherwise

fixing the ends of Σ, and let g be the automorphism of A(Σ, P ) induced by ψ. Then

consider f ′ = g◦f . By Lemma 2.5.4 and the construction of g, every loop λ ∈ L(Σ′, p)

is mapped to a loop f ′(λ) based at p. In other words, f ′ ∈ Aut(L(Σ′, p)), and so by

Corollary 2.4.7 it is induced by a homeomorphism φ′ ∈ MCG∗(Σ′, p) ⊆ MCG∗(Σ, P ).

Let φ = ψ−1 ◦ φ′.

By construction, φ agrees with f on every loop based at p; in particular they

agree on the image of T ′ and thus of T . Then as in the proof of Lemma 2.4.5, φ

agrees with f on each finite-type subsurface Σn because it preserves a triangulation
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of that subsurface. Since every arc is contained in some Σn for high enough n, φ

must agree with f on all arcs, and so φ induces f .
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Chapter 3

Quasi-isometries

This particularly rapid

unintelligible patter isn’t

generally heard, and if it is it

doesn’t matter!

W. S. Gilbert, The Pirates of

Penzance

3.1 Introduction

The goal of this chapter is to prove Theorems 3.5.3 and 3.6.5, as outlined in

Section 1.6. It is lightly adapted from [SC20].

This work was motivated by the resutls of Mann and Rafi [MR19], which

provide a thorough application of the philosophy of coarsely bounded generating

sets (see Section 1.5.1) to the area of big mapping class groups. In particular,
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their paper provides (under the technical condition of tameness—see Definition

3.2.8) a classification of which infinite-type surfaces admit coarsely bounded identity

neighborhoods and generating sets. The natural question that then follows, as

suggested in Section 1.6, is whether these big mapping class groups are quasi-

isometric to some “nice” metric spaces.

A number of such spaces have been studied. Examples include Bavard’s loop graph

[Bav16], Rasmussen’s nonseparating curve graph [Ras20], the graphs of separating

curves defined by Durham, Fanoni, and Vlamis [DFV18], and the general curve and

arc graphs defined by Aramayona, Fossas, and Parlier [AFP17].15 The fact that all

of these are graphs of curves or arcs motivates our focus on such graphs.

For graphs of curves we come to a very satisfying conclusion: we define a class

of translatable surfaces—essentially, surfaces admitting a map that acts with north-

south dynamics with respect to two distinct ends (see Definition 3.3.2)—and an

associated translatable curve graph, and show that the mapping class group of a

translatable surface is quasi-isometric to its translatable curve graph. What’s more,

we show that non-translatable surfaces do not admit such a graph of curves, except

when that graph has finite diameter. More precisely, we prove:

Theorem 3.5.3. Let Σ be an infinite-type surface with tame end space such that

MCG(Σ) admits a coarsely bounded neighborhood of the identity and a coarsely

15Fanoni, Ghaswala, and McLeay [FGM20] give an interesting action of a big mapping class

group on the graph of omnipresent arcs, but this action is not continuous when the graph is given

the topology of a simplicial complex.
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bounded generating set—and thus has a well-defined quasi-isometry type—but is not

itself coarsely bounded. Then the following are equivalent:

1. There exists a graph Γ whose vertices are curves and such that the action of

MCG(Σ) on Γ induces a quasi-isometry.

2. Σ is translatable.

3. Σ has no nondisplaceable finite-type surfaces, making it an avenue surface in

the sense of Horbez, Qing, and Rafi [HQR20].

We do not attempt in this paper to study the geometry of the translatable curve

graph, although we hope this will be a fruitful avenue for further research. One

property is however immediate: by the results of Horbez, Qing, and Rafi [HQR20]

the translatable curve graph—and thus the mapping class group of a translatable

surface—cannot be non-elementary δ-hyperbolic.

In the case of graphs of arcs we have not found such a general classification, but

we exhibit one particularly striking quasi-isometry. Note that the surface in question

is not translatable.

Theorem 3.6.5. Let Σ = R2 \ C be the plane minus a Cantor set. Then MCG(Σ)

is quasi-isometric to the loop graph L(Σ).

Though less general than the previous result, this quasi-isometry is of interest

because the loop graph is already well-studied; for instance, the hyperbolicity of

the loop graph was demonstrated by Bavard [Bav16], and thus MCG(Σ) is also
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hyperbolic; see Corollary 3.6.6. The Gromov boundary of this graph was also

described by Bavard and Walker [BW18].

This is, to our knowledge, the first case of a big mapping class group being shown

to be non-elementary δ-hyperbolic. By extension, it is also the first case in which

two big mapping class groups have been shown to have distinct, non-trivial quasi-

isometry types; see Corollary 3.6.7. Finally, it follows from Corollary 3.6.6 and work

of Cornulier and de la Harpe that MCG(Σ) has a coarsely bounded presentation;

see Corollary 3.6.10.

Before getting to the meat of the paper, we introduce an important motivating

example and preview some of the techniques that will be used.

Durham, Fanoni, and Vlamis [DFV18], studying the Jacob’s ladder surface (which

has two ends, both accumulated by genus—see Figure 3.1) present the following

subgraph of the curve graph of that surface: its vertices are curves separating the two

ends, with an edge between two such curves if they cobound a genus-one subsurface.

The main immediate application of this graph results from the fact that, unlike the

full curve graph of an infinite-type surface, it has infinite diameter. In particular, a

translation acts on this graph with unbounded orbits, which provides an easy proof

that the mapping class group of this surface is not coarsely bounded.

An early version of Vlamis’s notes on the topology of big mapping class groups

[Vla19] claimed that this graph is quasi-isometric to the mapping class group of

the Jacob’s ladder surface. Vlamis’s proof was incomplete—it showed only that the
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Figure 3.1: The Jacob’s ladder surface.

vertex stabilizers are coarsely bounded, which is not sufficient to conclude quasi-

isometry—but it provided significant inspiration for the results which eventually

became Theorem 3.4.9.

First, this graph could in fact be shown to be quasi-isometric to the mapping

class group, although it would take some additional effort. Second, the class of

surfaces for which such a graph might be built could be expanded significantly

beyond the Jacob’s ladder surface. The properties of Durham, Fanoni, and Vlamis’s

graph depended largely on the translatable nature of the Jacob’s ladder surface,

rather than the details of the translation itself. Other surfaces admitting a similar

kind of translation include the bi-infinite flute (see Figure 3.2) and more complicated

surfaces that might be built by joining many copies of a single surface as in Figure

3.3 (on page 52). By modifying the construction of Durham, Fanoni, and Vlamis

[DFV18] we are able to produce a general translatable curve graph T C(Σ) which is

quasi-isometric to the mapping class group MCG(Σ); this is Theorem 3.4.9.

One obvious follow-up question, given this quasi-isometry, is whether other such

graphs can be produced. For instance, are there other cases where a big mapping

class group is quasi-isometric to a graph whose vertices are curves? What if the
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Figure 3.2: The bi-infinite flute.

vertices are arcs? Theorem 3.5.3 answers the first question; Theorem 3.6.5 is a

partial answer to the second.

The structure of the rest of this chapter is as follows. In Section 3.2, we recall

relevant results from previous papers ([Ric63], [Ros18], and [MR19]) that are used

here, with the goal of making the chapter accessible to anyone with some knowledge of

geometric group theory and low-dimensional topology, but who may not have worked

previously with infinite-type surfaces or with the concept of coarse boundedness.

Section 3.2 also presents and proves Lemma 3.2.2, which is a limited version of the

Schwarz-Milnor lemma for the case of groups with coarsely bounded neighborhoods

of the identity acting transitively on graphs.

In Section 3.3, we define translatable surfaces and prove some of their properties,

most notably Proposition 3.3.5, which shows that every translatable surface can be

written as an infinite connected sum of copies of some subsurface S as in Figure 3.3.

In Section 3.4 we define the translatable curve graph itself and prove the quasi-

isometry to the mapping class group in Theorem 3.4.9. The main tools are a study

of the maximal ends of the subsurface S found in Proposition 3.3.5, and Lemma
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3.3.8, which allows us to embed the set of all mapping classes that fix half of our

translatable surface in a conjugate of any neighborhood of the identity.

In Section 3.5 we show that translatable surfaces are in fact the only surfaces with

non-coarsely-bounded mapping class groups quasi-isometric to a graph of curves,

proving Theorem 3.5.3. The main tools here are, on one hand, a demonstration that

under some reasonable conditions any surface with two equivalent maximal ends and

zero or infinite genus is translatable; and on the other hand, that all other surfaces

have mapping class groups that are either themselves coarsely bounded or have no

coarsely bounded curve stabilizers, making such a quasi-isometry impossible.

Finally, Section 3.6 uses methods parallel to those in Sections 3.3 and 3.4 to prove

that the mapping class group of the plane minus a Cantor set is quasi-isometric to

the loop graph of that surface.

3.2 Preliminaries

Before we begin, we recall several results from the work of Rosendal [Ros18] and

Mann and Rafi [MR19].

3.2.1 Coarse boundedness

Recall the definition of coarse boundedness from Section 1.5.1. We call a group

locally coarsely bounded if it has a coarsely bounded neighborhood of the identity.

Recall also from Section 1.5.1 that if A and B are two coarsely bounded generating
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sets for a locally coarsely bounded group G, the word metrics with respect to the

generating sets A and B are quasi-isometric.

We make heavy use of the following alternate characterization of coarse bound-

edness:

Lemma 3.2.1 (From [Ros18]). Given G a Polish group, and a subset A ⊆ G. Then

A is coarsely bounded if and only if for every identity neighborhood V ⊆ G there is

some k ∈ N and a finite set F ⊆ G such that A ⊆ (FV )k.

In light of this definition, we will want to talk about specific identity neighbor-

hoods in the mapping class group of a surface Σ: if S is a subsurface of Σ, let VS

be the set of mapping classes with representatives that restrict to the identity on

S. Note that the set {VS | S ⊆ Σ of finite type} forms a neighborhood basis of the

identity in MCG(Σ).

We’re looking to prove quasi-isometries between groups and graphs, so we want

something reminiscent of the Schwarz-Milnor lemma.

Lemma 3.2.2. Let G be a locally coarsely bounded group acting transitively by

isometries on a connected graph Γ equipped with the edge metric. Suppose that for

some vertex v0 ∈ Γ, the set A = {g ∈ G | d(v0, gv0) ≤ 1} is coarsely bounded. Then

the orbit map g 7→ gv0 is a quasi-isometry.

Proof. Coarse surjectivity follows directly from the transitivity of the action.

Fix some g ∈ G. Since Γ is connected, there is a minimal-length path v0, v1, . . . , vn =

gv0 from v0 to gv0 with d(vi, vi+1) = 1. Since d(v0, v1) = 1 and the action of G
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is transitive, there is some g0 ∈ A such that g0v0 = v1. Likewise, there is some

g′1 ∈ g0Ag
−1
0 such that g′1v1 = v2. Writing g′1 = g0g1g

−1
0 with g1 ∈ A and v1 = g0v0,

we see that g0g1v0 = v2. Continuing in this way, we can find g0, g1, . . . , gn−1 ∈ A

such that g0g1 · · · gn−1v0 = vn. Let gn = g−1g0g1 · · · gn−1. Then gnv0 = v0, so gn ∈ A,

and g0g1 · · · gn−1gn = g. Thus A is a generating set for G and the word-metric length

of g in A is at most n = d(v0, gv0) + 1.

On the other hand, suppose g0g1 · · · gk = g with each gi ∈ A and k minimal. By

the definition of A, d(g0g1 · · · giv0, g0g1 · · · gi+1v0) = d(v0, gi+1v0) ≤ 1, so the distance

d(v0, gv0) ≤ k + 1. Thus the map g 7→ gv0 coarsely preserves the word metric with

the generating set A, and thus the orbit map is a quasi-isometry for any choice of

coarsely bounded generating set for G.

Before we can apply this lemma, we need to know a bit more about infinite-type

surfaces.

3.2.2 Infinite-type surfaces

Recall from Section 1.1 that an infinite-type surface is classified by its (possibly

infinite) genus, its spacee of ends E, and the subset EG of ends accumulated by

genus. Following the example of Mann and Rafi, we will mostly avoid referencing

EG explicitly, and implicitly assume it is preserved. For instance, when we say that

two subsets U, V ⊆ E are homeomorphic, we mean that there is a homeomorphism

f : U → V such that f(U ∩ EG) = V ∩ EG.
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Mann and Rafi introduce the following partial pre-order on E, which provides a

valuable for tool for studying its topology:

Definition 3.2.3. Given x, y ∈ E, we say x ≽ y if for every clopen neighborhood U

of x, there exists a clopen neighborhood V of y homeomorphic to a clopen subset of

U .

As might be expected, we write y ≺ x when y ≼ x but x ̸≼ y, and y ∼ x when

y ≼ x and x ≼ y. We use the notation E(x) = {y ∈ E | x ∼ y} for the equivalence

class of x ∈ E under the relation ∼.

Crucially, this order has maximal elements, which have a fairly rigid structure:

Fact 3.2.4 (Proposition 4.7 of [MR19]). The partial pre-order ≼ has maximal

elements. Furthermore, for every maximal element x ∈ E, the equivalence class E(x)

is either finite or a Cantor set.

Mann and Rafi also define the following self-similarity condition, and prove some

useful properties of it:

Definition 3.2.5. A clopen neighborhood U of an end x ∈ E is stable if for

every clopen neighborhood U ′ of x contained in U , there is a clopen subset of U ′

homeomorphic to U .

Fact 3.2.6 (Lemma 4.17 of [MR19]). If x ∼ y ∈ E and x has a stable neighborhood

U , then all sufficiently small neighborhoods of y are homeomorphic to U via a

homeomorphism taking x to y.
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Fact 3.2.7 (Lemma 4.18 of [MR19]). Let x, y ∈ E and assume x has a stable

neighborhood Vx, and that x is an accumulation point of E(y). Then for any

sufficiently small clopen neighborhood U of y, U ∪ Vx is homeomorphic to Vx.

Many of the results in later sections will assume the existence of certain stable

neighborhoods, in the form of what Mann and Rafi call tameness :

Definition 3.2.8. An end space E is said to be tame if any x ∈ E that is either

maximal or an immediate predecessor to a maximal end has a stable neighborhood.

It is an open question (Problem 6.15 of [MR19]) whether there exists any surface

with non-tame end space whose mapping class group is not coarsely bounded but

has a well-defined quasi-isometry type. For this reason, we consider tameness to be

an acceptable condition to impose in some of our results.

To achieve the negative results of subsection 3.5.3, we will need to consider the

properties of mapping class groups that are locally coarsely bounded and admit a

coarsely bounded generating set. Here M(X) denotes the set of maximal ends of

some subspace X ⊆ E.

Fact 3.2.9 (Theorem 1.4 of [MR19]). MCG(Σ) is locally coarsely bounded if and

only if either MCG(Σ) is itself coarsely bounded or there is a finite-type surface

K ⊆ Σ such that the complementary regions of K each have infinite type and zero

or infinite genus, and partition E into finitely many clopen sets

E =

(⊔
A∈A

A

)
⊔

(⊔
P∈P

P

)
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such that:

1. Each A ∈ A is self-similar, with M(A) ⊆ M(E) and M(E) ⊆
⊔

A∈AM(A),

2. each P ∈ P homeomorphic to a clopen subset of some A ∈ A, and

3. for any xA ∈ M(A), and any neighborhood V of the end xA in Σ, there is

fV ∈ MCG(Σ) so that fV (V ) contains the complementary component to K

with end space A.

Moreover, in this case VK—the set of mapping classes restricting to the identity on

K—is a coarsely bounded neighborhood of the identity.

We will also make use of the following necessary condition for MCG(Σ) to have

a coarsely bounded generating set:

Definition 3.2.10 (Definition 6.2 of [MR19]). We say that an end space E has

limit type if there is a finite-index subgroup G of MCG(Σ), a G-invariant set X ⊆ E,

points zn ∈ E indexed by n ∈ N which are pairwise inequivalent, and a nested family

of clopen sets Un with
⋂

n∈N Un = X such that

E(zn) ∩ Un ̸= ∅, E(zn) ∩ U c
0 ̸= ∅, and E(zn) ⊆ (Un ∪ U c

0)

where U c
0 = E \ U0.

This definition is somewhat daunting, so we present the following example of a

surface whose end space has limit type. Let z1 be a puncture, and for each n > 1

let zn be an end accumulated by countably many points locally homeomorphic to
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zn−1. Then let zω be an end accumulated by {zn}n∈N. Let F be the set of ends just

defined, and let Σ be a surface with zero genus and end space homeomorphic to the

disjoint union of n copies of F for any n > 1. It can be verified that the end space

of Σ has limit type.

Fact 3.2.11 (Lemma 6.4 of [MR19]). If E has limit type, then MCG(Σ) does not

admit a coarsely bounded generating set.

3.3 Translations on surfaces

We first define a useful notion of convergence:

Definition 3.3.1. Given a surface Σ, an end e of Σ, and a sequence α1, α2, . . . of

curves on Σ, we say that limn→∞ αn = e if, for every neighborhood V of the end e

in the surface Σ, all but finitely many of the αi are (after some isotopy) contained

in V .

A translation, then, will be a map that moves all curves toward one end and

away from another. That is:

Definition 3.3.2. Given a surface Σ, a map h ∈ MCG(Σ) is called a translation

if there are two distinct ends e+ and e− of Σ such that for any curve α on Σ,

limn→∞ hn(α) = e+ and limn→∞ h−n(α) = e−. If such a translation exists, we call

the surface Σ translatable.
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Remark 3.3.3. This definition brings to mind several other classes of infinite-type

surfaces with two special ends that have recently been defined for various reasons.

• The telescoping surfaces of Mann and Rafi [MR19] form a strict subset of the

translatable surfaces: though every telescoping surface can be shown to be

translatable, the Jacob’s ladder surface is translatable but not telescoping.

• The doubly pointed surfaces of Aougab, Patel, and Vlamis [APV20] are a

strict superset of the translatable surfaces: every translatable surface is doubly

pointed, but the surface with zero genus and end space homeomorphic to

ωω2 + 1 is doubly pointed but not translatable.16

• The avenue surfaces of Horbez, Qing, and Rafi [HQR20] turn out to be precisely

those translatable surfaces that have tame end space. This result is part of

Theorem 3.5.3.

It follows directly from the definition that a translatable surface Σ cannot contain

any finite-type nondisplaceable surfaces, and so in particular Σ cannot have finite

type, finite positive genus, or any ends with a finite MCG(Σ)-orbit of size more

than 2. This gives us lots of non-examples, but there are also plenty of translatable

surfaces if we go looking for them.

16There are easier counterexamples, e.g. a surface with two inequivalent maximal ends (see

Lemma 3.5.16). This example demonstrates however that a doubly pointed surface may not be

translatable even if it has exactly two equivalent maximal ends.
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Figure 3.3: On the left, a surface S with two boundary components (in this case,

the connected sum of an annulus, a Loch Ness Monster, and a Cantor tree). On the

right, the translatable surface S♮Z.

The Jacob’s ladder surface and the bi-infinite flute, in Figures 3.1 and 3.2, are

clearly translatable; we can think of the flute as being derived from the ladder

by replacing each handle with a puncture. More generally, we might replace each

handle in the ladder with some other surface, as follows. Let S be any surface, not

necessarily of finite type, with two compact boundary components, and let Σ = S♮Z

be the gluing along their boundaries17 of countably many copies of S, arranged like

Z as in Figure 3.3. Then the map that takes each copy of S to the next one over is

a translation, and so Σ is translatable.

A natural question to ask is whether this last example includes all translatable

surfaces, and in fact it does. However, we may have to choose a different translation.

For this and future results, the following notation will be useful:

17The use of ♮ here is intended to invoke the standard use of # for connected sum, and was

suggested to me on Facebook by Rylee Lyman.
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Definition 3.3.4. Suppose Σ is a translatable surface and α a curve in Σ separating

e+ and e−. Then we denote by α+ (resp. α−) the component of Σ \ α containing

the end e+ (resp. e−). If β is a curve separating α and e+, then we denote by (α, β)

the subsurface α+ ∩ β− of Σ bounded by α and β.

Proposition 3.3.5. Let Σ be a translatable surface with translation h and α a curve

separating the ends e+ and e−. Then there is a surface S = (α, hN(α)) for some N

such that Σ is homeomorphic to S♮Z.

Proof. By the definition of translation, there is some N ∈ N such that for all n ≥ N ,

hn(α) ⊆ α+. Then hN is also a translation, so without loss of generality we can

replace h with hN and assume that all hi(α) are disjoint.

Let S = (α, h(α)). If x ∈ Σ but not in any hi(α), then x is either in α+

or α−. Supposing without loss of generality that x ∈ α+, there must be some

least i such that x ̸∈ hi(α)+, otherwise h
i(α) could not converge to e+. Then

x ∈ (hi−1(α), hi(α)) = hi−1(S). On the other hand, hi(S) ∩ S = ∅ for all i ̸= 0 by

construction, and so every point of Σ is in exactly one hi(S) or hi(α).

The resulting subsurface S has two boundary components, and the copies of S

are glued together exactly as desired.

This decomposition depended on the choice of a curve separating e+ and e−.

We might ask how important that choice was, and it turns out the answer is “not

much”.
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Lemma 3.3.6. Let Σ be a translatable surface, and α and β two curves separating

the ends e+ and e−. Then there is some f ∈ MCG(Σ) which fixes the ends e+ and

e− and such that f(α) = β.

Proof. First, replace β with some hn(β) so that β ⊆ α+, and then replace h with some

power of h so that β ⊆ (α, h(α)). By Proposition 3.3.5, we can write Σ = S♮Z = T ♮Z,

where S = (α, h(α)) and T = (β, h(β)).

If we let X = (α, β), Y = (β, h(α)), and Z = (h(α), h(β)), then (α, h(α)) = X♮Y

and (β, h(β)) = Y ♮Z. ButX and Z are homeomorphic, and thus so are S = (α, h(α))

and T = (β, h(β)). It follows that we can map each copy of S to the appropriate

copy of T , giving us a homeomorphism of Σ that takes α to β and fixes the ends e+

and e−.

There is one more symmetry of a translatable surface worth discussing here:

Lemma 3.3.7. Let Σ be a translatable surface, and α a curve separating the ends

e+ and e−. Then there is some r ∈ MCG(Σ) that transposes e+ and e− and restricts

to an orientation-reversing homeomorphism on α.

Proof. In a tubular neighorhood of α, r is just a rotation by π about a diameter of

the circle α—see Figure 3.4. By Proposition 3.3.5, α+ and α− are homeomorphic,

so this r can be extended to a homeomorphism on all of Σ.

The following lemma will be quite useful in light of Lemma 3.2.1.
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Figure 3.4: Within a tubular neighborhood of the blue curve α, the curve’s orientation

can be reversed via a rotation by π about its red diameter.

Lemma 3.3.8. Let Σ be a translatable surface with translation h, and α a curve

separating the ends e+ and e−. Then for any identity neighborhood V in MCG(Σ),

there is some n ∈ N such that Vα− ⊆ h−nV hn and Vα+ ⊆ hnV h−n.

Proof. By the topology of MCG(Σ), there is some finite-type subsurface T ⊆ Σ such

that VT ⊆ V . Let n ∈ N so that T ⊆ hn(α)−. Then we have

T ⊆ hn(α)−

Vhn(α)− ⊆ VT

Vhn(α)− ⊆ V

hnVα−h
−n ⊆ V

Vα− ⊆ h−nV hn

and likewise Vα+ ⊆ hnV h−n.
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Corollary 3.3.9. Let Σ be a translatable surface with translation h, and α a curve

separating the ends e+ and e−. Then the set H = {f ∈ MCG(Σ) | f(α) is homotopic to α}

of mapping classes stabilizing α is coarsely bounded.

Proof. Fix an identity neighborhood V , and using Lemma 3.3.8 find n ∈ N so that

Vα− ⊆ h−nV hn and Vα+ ⊆ hnV h−n. Let F = {r−1, hn, h−n} where r is the map

defined in Lemma 3.3.7. We claim that H ⊆ (FV )5, which gives the result by

Lemma 3.2.1.

Pick f ∈ H. Up to homotopy, f|α is either the identity or a reflection map; in the

latter case replace f with rf so that f|α is the identity. Then the action of f on α+

and α− do not interact, and so f can be decomposed as f = f−f+, where f− ∈ Vα−

and f+ ∈ Vα+ . It follows by our choice of n that f− ∈ h−nV hn and f+ ∈ hnV h−n,

so f ∈ h−nV hnhnV h−n ⊆ (FV )4. Since we may also have applied r−1, this gives

f ∈ (FV )5.

Corollary 3.3.10. Let Σ be a translatable surface. Then MCG(Σ) is locally coarsely

bounded.

Proof. The stabilizer H of a curve separating the ends e+ and e− is an identity

neighborhood, and by Corollary 3.3.9 it is coarsely bounded.

Note that unlike in the following sections, here we have not assumed tameness.
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3.4 The translatable curve graph

We are now ready to define a graph quasi-isometric to MCG(Σ) when Σ is a

translatable surface.

Definition 3.4.1. Fix a collection S of subsurfaces of Σ. The translatable curve

graph T C(Σ,S) of Σ with respect to the set of subsurfaces S is the graph whose

vertices are curves separating e+ and e−, with an edge between two curves α and β

if they have disjoint representatives and (α, β) or (β, α) is homeomorphic to some

S ∈ S.

We will eventually define a canonical and finite set S depending only on the

surface Σ; once this has been defined, we will omit S and write simply T C(Σ).

Note that Corollary 3.3.9 implies that vertex stabilizers of T C(Σ,S) are coarsely

bounded. Also, with Σ the Jacob’s ladder surface and S a surface with genus 1

and two boundary components, the graph T C(Σ, {S}) is precisely the motivating

example from page 41.

For an arbitrary translatable surface Σ, we might try taking a subsurface S

such that Σ = S♮Z as in Proposition 3.3.5. But T C(Σ, {S}) will not in general

be connected. Instead, we will use the topology of S to construct a collection of

subsurfaces S such that T C(Σ,S) satisfies the conditions of Lemma 3.2.2.

Consider the space of ends E(S) of S; we may ask how these relate to the order

structure on E(Σ).
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Lemma 3.4.2. The maximal ends of the subsurface S are either maximal ends of Σ

or immediate predecessors to maximal ends of Σ.

Proof. It follows from the decomposition given in Proposition 3.3.5 that e+ and e−

are maximal ends of Σ, and that e+ ∼ e−. In fact, they are global maxima of the

partial preorder: for any end x of Σ, x ≼ e+. If E(e+) contains some point y distinct

from e+ and e−, then y is in the end space of some copy of S. In particular, since it

is still true that for every end x of Σ, x ≼ e+ ∼ y, E(e+) contains all the maximal

ends of S.18

If, on the other hand, E(e+) = {e+, e−}, then let x be maximal in S. We know

that x ≺ e+. Suppose we have an end y such that x ≼ y ≼ e+. If y is an end of

some copy of S, then by maximality y ∼ x. But if y is not an end of any copy of

S, the only other possibility is that y = e±, in which case y ∼ e+. Thus x is an

immediate predecessor to e+.

Corollary 3.4.3. If the end space of Σ is tame, then every maximal end of S has a

stable neighborhood.

In general, a surface might have infinitely many equivalence classes of maximal

ends. With tameness, however, the possibilities are much more limited.

18This implies, by Proposition 4.8 of [MR19], that the end space of Σ is self-similar and thus

MCG(Σ) is coarsely bounded, and we will in fact see that T C(Σ,S) has finite diameter under these

circumstances.
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Lemma 3.4.4. If every maximal end of T ⊆ Σ has a stable neighborhood, then the

end space E(T ) has finitely many equivalence classes of maximal ends.

Proof. For each maximal end x of T , let Vx be a stable neighborhood of x. For

every end y, pick a clopen neighborhood Uy of y such that Uy is homeomorphic to a

clopen subset of Vx for some maximal end x.

Since the neighborhoods Uy cover the end space E(T ), and E(T ) is compact,

there is a finite set U1, . . . , Un covering E(T ), where each Ui is homeomorphic to a

clopen subset of Vxi
.

Now for each y ∈ E(T ), y ∈ Ui for some i. Let V be an arbitrary clopen

neighborhood of xi; by stability, V contains a homeomorphic copy of Vxi
, which

in turn contains a homeomorphic copy of Ui by construction. Thus y ≼ xi. It

follows that the set {x1, . . . , xn} contains a representative of every equivalence class

of maximal ends, so there are at most n such equivalence classes.

While there are finitely many equivalence classes of maximal ends, a priori the

non-maximal ends might contribute meaningfully to the topology of a subsurface.

However, this is not the case.

Lemma 3.4.5. Given a subsurface T ⊆ Σ with end space E(T ) and such that every

maximal end of T has a stable neighborhood, E(T ) can be written as the disjoint

union
⊔k

i=1 Vk where each Vi is a stable neighborhood of a maximal end of T .

Proof. Let M be a set containing every maximal end x such that E(x) ∩ E(T ) is

finite, and a single representative from E(x) for every equivalence class of maximal
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ends such that E(x)∩E(T ) is infinite. By Lemma 3.4.4M is finite and thus discrete,

so we can pick disjoint stable neighborhoods Vx ⊆ E(T ) for each x ∈ M . Let

V =
⊔

x∈M Vx.

For each y ∈ E(T ) \ V , there is by maximality some x ∈M such that y ≼ x. If

y ≺ x, then x is an accumulation point of E(y); and if y ∼ x, then since y ̸∈ V the

set E(x) ∩ E(T ) must be infinite, and thus a Cantor set by Fact 3.2.4, and so again

x is an accumulation point of E(y) = E(x). Thus in either case we can apply Fact

3.2.7 to find some clopen Uy ∋ y such that Uy ∪ Vx is homeomorphic to Vx. The

set E(T ) \ V is clopen and thus compact, and is covered by the neighborhoods Uy,

so there is a finite set of these neighborhoods covering E(T ) \ V ; since they are all

clopen we can ensure they are disjoint.

For each Uy in this finite set, pick Vx so that Vx ⊔Uy is homeomorphic to Vx, and

then replace Vx with Vx ⊔ Uy. After finitely many steps, the entire end space E(T )

is contained in the disjoint union
⊔

x∈M Vx. See Figure 3.5 for an example.

We are now ready to define the canonical collection S of subsurfaces that will be

used in the definition of the graph T C(Σ,S). The following construction assumes Σ

is tame. Let {f1, . . . , fn, c1, . . . , cm} be representatives of the equivalence classes of

maximal ends of S, with each E(fi) intersecting the end space of S finitely many

times, and each E(ci) intersecting the end space of S in a Cantor set. Pick disjoint

stable neighborhoods Vfi and Vci of each representative.

For each 1 ≤ i ≤ n, let Ti be a surface with two boundary components and
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Figure 3.5: From the proof of Lemma 3.4.5: on the left, the end space E(T ) is

divided into finitely many disjoint regions by compactness. Each shaded region is

a stable neighborhood of a maximal point, shown as a black dot. Each unshaded

region satisfies Fact 3.2.7 with respect to one of the shaded regions. On the right,

the shaded regions have been expanded by repeated application of Fact 3.2.7 so that

they now cover the whole surface. Note that each shaded region is still a stable

neighborhood of the maximal point shown as a dot; in fact, each large shaded region

on the right is homeomorphic to the similarly-colored small region on the left.
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end space homeomorphic to Vfi ⊔
⊔m

j=1 Vcj . If fi or any of the cj is accumulated

by genus, then by construction Ti will have infinite genus; if none of them are, we

further specify that Ti have genus zero. If none of the fi or ci are accumulated by

genus, but the surface Σ has positive genus—in other words, if S has finite positive

genus—then let Tn+1 be the surface with two boundary components, genus 1, and

end space homeomorphic to
⊔m

j=1 Vcj . Let S = {T1, . . . , Tn, (Tn+1)}, including Tn+1

if it has been defined.

We need to handle an edge case: if n = 0 and S has 0 or infinite genus, the

above construction will give S = ∅, which is not desirable; so in this case we let

S = {S}, noting that S is in fact a surface with two boundary components and end

space homeomorphic to
⊔m

j=1 Vcj by Lemma 3.4.5. It can be seen without too much

trouble that in this case T C(Σ,S) has diameter 2; this is consistent with the fact

that under these conditions the end space of Σ is either self-similar (if the maximal

ends are all equivalent to e+ and e−) or telescoping with respect to e+ and e− (if

they are predecessors), and so by Proposition 3.5 of [MR19] the mapping class group

MCG(Σ) is coarsely bounded.

From here on we assume S is the set of subsurfaces just constructed, and write

T C(Σ) to mean T C(Σ,S).

Before proving connectedness we introduce the following construction, which

allows us to produce subsurfaces of Σ with nearly arbitrary genus and end space.

Lemma 3.4.6. Let Σ be a translatable surface with a curve α separating e+ and e−.
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Then for any clopen subset V ⊆ E(α+), there is a curve β also separating e+ and e−

and such that E((α, β)) = V . Furthermore, if no end of V is accumulated by genus,

but e+ is, there is for every n ∈ N a choice of β such that (α, β) has genus n.

Proof. Recall that for any separating curve γ on Σ, the end sets of the two compo-

nents of Σ \ γ are both clopen subsets of E(Σ), and that these clopen subsets form

a basis for the topology of E(Σ).

By picking clopen neighborhoods of this kind for each end in V and applying

compactness, we can describe V as a disjoint union of clopen sets, each of which is

bounded by a curve. These can then be combined so that V is bounded by a single

curve, as in Figure 3.6. Call this curve η. Draw an arc λ connecting the curves

α and η, and let β be the curve following along α, λ, and η as in Figure 3.7. By

construction, β separates e+ and e−, and E((α, β)) = V .

If no end of V is accumulated by genus but e+ is, then (α, β) must have finite

genus and β+ must have infinite genus. By picking a curve ζ separating a single

handle from the rest of Σ and then applying the construction of Figure 3.7 with β

replacing α and ζ replacing η, we get a new curve β′ such that (α, β) and (α, β′)

have the same end space but genus differing by 1. Doing this finitely many times

lets us achieve arbitrary genus for (α, β) in this case.

Now that we can construct appropriate subsets, we will be able to build paths

between curves in T C(Σ).
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Figure 3.6: If V is the union of finitely many sets bounded by blue curves, we can find

a single red curve η bounding V . Each squiggle represents a possibly complicated

clopen set of ends.

Figure 3.7: Given α in blue, η in red, and λ in gray, we draw β in magenta. Again,

each squiggle represents a possibly complicated clopen set of ends.
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Lemma 3.4.7. If Σ is a translatable surface with tame end space then T C(Σ) is

connected.

Proof. Given α, β ∈ T C(Σ), let γ be a curve in α+ ∩ β+ such that the subsurfaces

(α, γ) and (β, γ) both have end spaces containing representatives of each E(fi) and

E(ci), using the representatives {f1, . . . , fn, c1, . . . , cm} defined above; such a curve

γ can always be found by looking in a small enough neighborhood of e+. We will

show that α is connected to γ; by symmetry, this will imply that β is connected to

γ and so α is connected to β.

Let g equal the genus of the subsurface (α, γ) if it has finite genus, and 0 if it has

infinite genus. By Lemma 3.4.5 the end space of (α, γ) can be written as
⊔k

i=1 Vi

where each Vi is a stable neighborhood of a maximal end. Let’s rewrite this disjoint

union as (
⊔m

i=1 Vi)⊔
(⊔ℓ

j=1 Vj

)
where the first m stable neighborhoods contain points

equivalent to each of the ci, and the subsequent ℓ stable neighborhoods contain

points equivalent to the fi. Since E(ci) ∪ Vi is a Cantor set, we can identify ℓ+ g

elements of E(ci) inside Vi and write Vi as
⊔ℓ+g

j=1 Vi,j where each Vi,j is homeomorphic

to Vi. Then for each 1 ≤ j ≤ ℓ, let Wj = Vj ⊔
⊔m

i=1 Vi,j , and for ℓ+ 1 ≤ j ≤ ℓ+ g let

Wj =
⊔m

i=1 Vi,j. By construction, the end space of (α, γ) is
⊔ℓ

j=1Wj.

Finally, define {α0 = α, α1, . . . , αℓ+g = γ} such that the end space of (αj−1, αj)

is Wj and such that the genus of (αj−1, αj) is 0 or infinite for j ≤ ℓ and 1 for j ≥ ℓ,

which is possible by Lemma 3.4.6. Then each (αj−1, αj) is homeomorphic to one of

the subsurfaces Ti ∈ S, and so αj−1 and αj are adjacent in T C(Σ).
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This leaves us quite close to fulfilling all the hypotheses of Lemma 3.2.2. We

need one more ingredient:

Lemma 3.4.8. Let Σ be a translatable surface with tame end space. Then for any

vertex α of T C(Σ), the set H = {f ∈ MCG(Σ) | d(f(α), α) ≤ 1} is coarsely bounded.

Proof. We will start by defining some helpful mapping classes. Using Proposition

3.3.5, let Σ = S♮Z = ♮j∈Z Sj where all the Sj are homomorphic and S0 = (α, hN(α))

for some N . As above let {f1, . . . , fn, c1, . . . , cm} be representatives of the equivalence

classes of maximal ends of S0. We may choose these so that each fi and ci is actually

an end of S0 itself. Let {Vf1 , . . . , Vfn , . . . , Vc1 , . . . , Vcm} be a set of disjoint stable

neighborhoods of these ends, also contained in the end space of S0. For each x equal

to some fi or ci and each j ∈ Z, let Vx,j be the homeomorphic copy of Vx in the end

space of the subsurface Sj.

Note that the sequence of sets Vfi,j converges to e± as j goes to ∞±, and likewise

for Vci,j. That means that for each maximal end x equal to some fi or ci there is

a homeomorphism of the end space of Σ taking each Vx,j to Vx,j+1 and fixing the

rest of the end space pointwise. This homeomorphism of the end space extends to

a homeomorphism hx of Σ; if the end x is not accumulated by genus we may also

construct hx so that (α, hx(α)) has genus 0. For each 1 ≤ i ≤ n let hi = hfi◦
∏m

k=1 hck .

If S0 has finite positive genus, let hgenus be a map that moves a single handle from

each Sj to Sj+1 and fixes the end space of Σ, and then let hn+1 = hgenus ◦
∏m

k=1 hck .

Observe that by construction (α, hi(α)) and (h−1
i (α), α) are both homeomorphic
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to the subsurface Ti ∈ S, where S is the canonical set of subsurfaces used to define

T C(Σ) = T C(Σ,S).

We are now ready to prove that H is coarsely bounded using Lemma 3.2.1. Let

V be an identity neighborhood in MCG(Σ), and find n ∈ N as in Lemma 3.3.8 so

that Vα− ⊆ h−nV hn and Vα+ ⊆ hnV h−n. Let F = {r−1, h±n, h±1
1 , . . . , h±1

n , (h±1
n+1)},

where r is the mapping class defined in Lemma 3.3.7 and including the maps h±1
n+1 if

they are defined. We claim that H ⊆ (FV )8.

Let f ∈ H. If d(α, f(α)) = 0, then f ∈ (FV )5 as shown in Corollary 3.3.9. If

not, then d(α, f(α)) = 1 and so α and f(α) have disjoint representatives. Assume

f ⊆ α+—if not, we will merely have to reverse some signs. By the definition of

adjacency in T C(Σ) = T C(Σ,S), we know that (α, f(α)) is homeomorphic to some

Ti ∈ S. Since (α, f(α)) is homeomorphic to (α, hi(α)) by construction, and f(α)+ is

homeomorphic to hi(α)+ by Lemma 3.3.6, there is a map g taking hi(α) to f(α) and

restricting to the identity on α−—that is, g(hi(α)) = f(α) and g ∈ Vα− ⊆ (FV )2.

Let f0 = h−1
i g−1f . By construction, f0(α) = α, so by Corollary 3.3.9 f0 ∈

(FV )5. Then we have f = ghif0, where g ∈ (FV )2, hi ∈ F , and f0 ∈ (FV )5, so

f ∈ (FV )8.

Putting this all together gives us

Theorem 3.4.9. If Σ is a translatable surface with tame end spcae, then T C(Σ)

equipped with the edge metric is quasi-isometric to MCG(Σ).

Proof. The group MCG(Σ) is locally coarsely bounded by Corollary 3.3.10. The
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graph T C(Σ) is connected by Lemma 3.4.7. The action of MCG(Σ) on it is transitive

by Lemma 3.3.6. Finally, the set of mapping classes that moves a vertex a distance

at most 1 is coarsely bounded by Lemma 3.4.8. Thus by Lemma 3.2.2 the action

induces a quasi-isometry.

3.5 Equivalent definitions of translatability

We have just seen that a translatable surface Σ with tame end space is quasi-

isometric to the translatable curve graph T C(Σ), which is a graph whose vertices are

curves. This section establishes that the existence of such a graph is nearly unique

to translatable surfaces.

We say “nearly unique” because there is one other example: if MCG(Σ) is coarsely

bounded, then it is quasi-isometric to any finite-diameter graph. In particular, the

curve graph C(Σ) of an infinite-type surface always has diameter 2, giving a trivial

quasi-isometry. For this reason, coarsely bounded mapping class groups are excluded

in the hypothesis of Theorem 3.5.3.

Another condition which we show to be equivalent to translatability is the

following, due to Horbez, Qing, and Rafi [HQR20].

Definition 3.5.1 (Definition 1.8 of [MR19]). A connected, finite-type subsurface

S of a surface Σ is called nondisplaceable if f(S) ∩ S ̸= ∅ for each f ∈ MCG(Σ).

A non-connected surface is nondisplaceable if, for every f ∈ MCG(Σ) and every

connected component Si of S, there is a connected component Sj of S such that
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f(Si) ∩ Sj ̸= ∅.

Definition 3.5.2 (Definition 4.4 of [HQR20]). An avenue surface is a connected,

orientable surface Σ which does not contain any nondisplaceable finite-type subsur-

faces, whose end space is tame, and whose mapping class group MCG(Σ) admits a

coarsely bounded generating set but is not itself coarsely bounded.

Theorem 3.5.3. Let Σ be an infinite-type surface with tame end space such that

MCG(Σ) is locally coarsely bounded and admits a coarsely bounded generating set—

and thus has a well-defined quasi-isometry type—but is not itself coarsely bounded.

Then the following are equivalent:

1. There exists a graph Γ whose vertices are curves and such that the action of

MCG(Σ) on Γ induces a quasi-isometry.

2. Σ is translatable.

3. Σ is an avenue surface.

Proof. 2 =⇒ 1: This is Theorem 3.4.9.

2 =⇒ 3: We are already assuming that Σ has tame end space and that MCG(Σ)

admits a coarsely bounded generating set but is not itself coarsely bounded. By the

definition of a translation map, a translatable surface cannot have any finite-type

nondisplaceable surfaces, and so Σ is an avenue surface.

3 =⇒ 2: Lemma 4.5 of [HQR20] says that an avenue surface has zero or

infinite genus and exactly two maximal ends, while Lemma 4.6 of [HQR20] says that
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every nonmaximal end of an avenue surface precedes both maximal ends under the

standard ordering. It follows by Lemma 3.5.9 that Σ is translatable.

1 =⇒ 2: We divide our work into three cases, depending on the genus and

maximal ends of Σ:

1. If Σ has zero or infinite genus and one or a Cantor set of equivalent maximal

ends, then by Corollary 3.5.6 the group MCG(Σ) is coarsely bounded, which

is excluded by the hypothesis of the theorem.

2. If Σ has zero or infinite genus and two equivalent maximal ends, then by

Proposition 3.5.7 it is translatable.

3. If Σ has finite positive genus or any other structure of maximal ends, then by

Proposition 3.5.17 there is no graph whose vertices are curves and on which

the action of MCG(Σ) induces a quasi-isometry, contradicting our assumption.

Thus the only remaining possibility is that Σ is translatable.

The following three subsections correspond to the three cases in the last step of

the proof of Theorem 3.5.3.

3.5.1 Coarsely bounded mapping class groups

The first case is essentially a rehash of the following facts. Recall that M(Σ) is the

set of maximal ends of Σ.
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Fact 3.5.4 (Proposition 3.1 of [MR19]). If Σ has zero or infinite genus and self-

similar end space, then MCG(Σ) is coarsely bounded.

Fact 3.5.5 (Proposition 4.8 of [MR19]). If Σ has no nondisplaceable finite-type

subsurfaces and M(Σ) consists of either a singleton or a Cantor set of equivalent

ends, then its end space is self-similar.

To link these two facts together we need to add the assumption of tameness:

Corollary 3.5.6. If Σ has zero or infinite genus and tame end space, and M(Σ)

consists of either a singleton or a Cantor set of equivalent ends, then MCG(Σ) is

coarsely bounded.

Proof. Given the previous facts, we need only show that Σ has no nondisplaceable

finite-type subsurfaces. Let S be a finite-type subsurface of Σ. By expanding S we

may assume that S is connected with all its boundary curves essential and separating.

Let E1, . . . , En be the end spaces of the complementary components of S, and E0 the

end space of S itself, which may be empty or contain a finite set of punctures. Since

E0 ⊔ · · · ⊔ En = E, there is a maximal end x in some Ei; without loss of generality

we may assume x ∈ En. Let α be the boundary component of S corresponding to

En.

Since Σ has tame end space, En contains a stable neighborhood of x; and since

for every end y, we know that x is an accumulation point of E(y), we can use Fact

3.2.7 and compactness to find a clopen subset F ⊆ En homeomorphic to E \ En.
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Let β be a separating curve whose complementary components have end spaces F

and E \ F , and such that the component of Σ \ β with end space F has the same

genus as the component of Σ \ α containing S.

The complementary components of the curves α and β have the same genus and

end space by construction, so we can find some f ∈ MCG(Σ) exchanging α and β.

Then f(S) and S are in distinct components of Σ \α, and so the subsurface S is not

nondisplaceable; thus Σ has no nondisplaceable finite-type subsurfaces. It follows

that the end space of Σ is self-similar, and so MCG(Σ) is coarsely bounded.

3.5.2 Translatable surfaces

Proposition 3.5.7. Suppose Σ has tame end space, zero or infinite genus, and

exactly two equivalent maximal ends, e+ and e−. If MCG(Σ) is locally coarsely

bounded and has a coarsely bounded generating set, then Σ is translatable with respect

to the ends e+ and e−.

Our first step towards proving Proposition 3.5.7 will be to find the immediate

predecessors of the maximal ends of Σ.

Lemma 3.5.8. Let Σ be a surface with tame end space and two maximal ends,

e+ and e−. If MCG(Σ) is loaclly coarsely bounded and admits a coarsely bounded

generating set, then there is a finite set of ends x1, . . . , xn such that each xi is an

immediate predecessor of e+, and every end y ≺ e+ satisfies y ≼ xi for some i.

Proof. Find K as in Fact 3.2.9, with complementary region A containing the end
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e+, and let U0 be the end space of A. Fix y ≺ e+; by possibly replacing y with

an equivalent end, we may assume y ∈ U0. Let U1 be a clopen subset of U0 \ {y}

containing e+, and construct a neighborhood basis U0 ⊇ U1 ⊇ U2 ⊇ · · · of clopen

sets such that
⋂

n∈N Un = {e+}.

The set {x ∈ U0 \ U1 | y ≼ x} is compact and nonempty, and so it has a (not

necessarily unique) maximal element which we will call z0. Similarly, for n > 0 let

zn be a maximal element of the set {x ∈ Un \ Un−1 | zn−1 ≼ x}.

We claim there is some z such that zn ∼ z for all sufficiently high n. If not,

then up to taking a subsequence we may assume the zn are pairwise inequivalent.

By construction each zn ∈ Un, so E(zn) ∩ Un ̸= ∅. For any m < n, zm ≺ zn but

zm was maximal in Um \ Um+1, so E(zn) ∩ (Um \ Um+1) = ∅, and thus in general

E(zn) ∩ (U0 \ Un) = ∅, or in other words E(zn) ⊆ (Un ∪ U c
0). Finally, let B be

a subsurface of A with end space Un+1. By Fact 3.2.9 there is a mapping class

f ∈ MCG(Σ) so that A ⊆ f(B). Then f(zn) ∈ U c
0 ∩ E(zn) so this set is not empty.

Let G = {f ∈ MCG(Σ) | f(e+) = e+}. Since the only end of Σ that might

be equivalent to e+ is e−, G has index at most two in MCG(Σ), and the set {e+}

is G-invariant. Thus we have fulfilled the definition of limit type, and so by Fact

3.2.11 MCG(Σ) cannot admit a coarsely bounded generating set. Since we assumed

otherwise, this is a contradiction. This proves our claim that zn ∼ z for all sufficiently

high n. This z must be an immediate predecessor of e+ (otherwise it would not be

maximal in some Un \ Un+1) and by construction y ≼ z.
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We now claim that there is a clopen subset F ⊆ U0 such that e+ ̸∈ F but

for every immediate predecessor z of e+, F ∩ E(z) ̸= ∅. Suppose not. Then

we can pick a sequence of immediate predecessors {zn}n∈N of e+ and clopen sets

U0 ⊇ U1 ⊇ U2 ⊇ · · · with
⋂

n∈N Un = {e+} such that each zn ∈ Un but zn ̸∈ (U0\Un).

As above we can use Fact 3.2.9 to find an element of E(zn) in U
c
0 , so this would

again show that E has limit type, a contradiction by Fact 3.2.11. This proves our

claim.

For each end y ∈ F , let xy ∈ E be an immediate predecessor of e+ with y ≼ xy.

That means that for a stable neighborhood Vxy of xy—which must exist because E

is tame—there is some clopen neighborhood Uy of y such that Uy is homeomorphic

to a clopen subset of Vxy . The sets {Uy}y∈F cover the compact set F , so we can

pick a finite collection U1, . . . , Un with corresponding x1, . . . , xn predecessors to e+

so that the Ui cover F and each Ui is homeomorphic to a clopen subset of Vxi
. In

particular, by stability z ≼ xi for every z ∈ Ui and so every end in F is bounded

above by one of the xi. If z is an immediate predecessor of e+, then by construction

there is some z′ ∼ z in F , and so z ∼ z′ ≼ xi for some i. Since z is an immediate

predecessor of e+, it follows that z ∼ xi, so there are only finitely many equivalence

classes of immediate predecessors.

The following lemma is nearly identical to Proposition 3.5.7; we list it separately

so that it can be used in other parts of this section.

Lemma 3.5.9. Let Σ be a surface of zero or infinite genus with tame end space and
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two maximal ends, e+ and e−, with the property that for every end y ∈ E \ {e+, e−},

y ≼ e+ and y ≼ e−. If MCG(Σ) is locally coarsely bounded and admits a coarsely

bounded generating set, then Σ is translatable.

Proof. First, note that e+ is accumulated by genus if and only if e− is, by the

following argument: suppose e+ is accumulated by genus but e− is not. If some

y ≺ e+ were accumulated by genus, then e− would have to be as well since it is

an accumulation point of E(y). So e+ is the only end of Σ accumulated by genus.

Since MCG(Σ) is locally coarsely bounded, we can find a surface K as in Fact 3.2.9.

Let A be the component of Σ \K containing e+, and note that A is the only such

component with nonzero genus. Pick a subsurface V ⊆ A containing e+ and such

that A \ V has positive genus. By Fact 3.2.9, there is some f ∈ MCG(Σ) such that

A ⊆ f(V ). But that would mean Σ \ V has positive genus while Σ \ f(V ) has zero

genus, a contradiction. Thus e+ is accumulated by genus if and only if e− is.

Let x1, . . . , xk be the immediate predecessors to e+ found via Lemma 3.5.8. Fix a

curve α0 separating e+ and e−. Pick a sequence of pairwise disjoint curves α1, α2, . . .

such that limn→∞ αn = e+—this is possible by definition for any end—and likewise

α−1, α−2, . . . such that limn→−∞ αn = e−. By moving to a subsequence, we may

assume that for each n ∈ Z the subsurface (αn, αn+1) has positive (possibly infinite)

genus if Σ has infinite genus, and furthermore that the end space of this subsurface

includes an element of each E(xi).

By Lemma 3.4.5, write the end space of (αn, αn+1) as
⊔p

j=1 Vn,j, where each Vn,j
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is a stable neighborhood of an immediate predecessor of e+. Note that each Vn,j is

homeomorphic to some Ui, a stable neighborhood of the immediate predecessor xi.

Thus we can describe the end space of Σ as follows:

E = {e−, e+} ⊔
⊔
n∈Z

(
k⊔

i=1

Ui,n

)

where each Ui,n is a copy of Ui, and the only additional topology is given by the

limits

lim
n→±∞

Vi,n = e±

for each 1 ≤ i ≤ k.

Let S be a surface with end space
⊔k

i=1 Ui and genus defined as follows: if some

xi is accumulated by genus, S will have infinite genus by definition. If Σ has zero

genus, let S also have zero genus. If Σ has infinite genus but no xi is accumulated

by genus—which implies that only e+ and e− are accumulated by genus—then let

S have genus 1. Then the surface S♮Z, which is translatable by construction, has

genus and end space matching that of Σ, and so they are homeomorphic. Thus Σ is

translatable.

The proof of Proposition 3.5.7 follows directly:

Proof of Proposition 3.5.7. Since e+ and e− are the only maximal ends of Σ, and

e+ ∼ e−, every end y ∈ E has y ≼ e+ and y ≼ e−. Then we can apply Lemma

3.5.9.
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3.5.3 All other surfaces

Remark 3.5.10. Many of the proofs in this subsection are inspired by and to some

extent duplicate the work in Mann and Rafi’s proof of Fact 3.2.9. They are included

for completeness.

We have covered the cases where Σ has zero or infinite genus and either one

maximal end, two equivalent maximal ends, or a Cantor set of equivalent maximal

ends. We now show that if the maximal ends of Σ have any other structure, or if Σ

has finite positive genus, there is no graph whose vertices are curves onto which the

action of MCG(Σ) induces a quasi-isometry. Our main tool will be the following

observation of Mann and Rafi:

Fact 3.5.11 (Lemma 5.2 of [MR19]). Let K ⊆ Σ be a finite-type subsurface. If there

exists a finite-type, nondisplaceable (possibly disconnected) subsurface S ⊆ Σ \K,

then VK is not coarsely bounded.

Corollary 3.5.12. Let Σ be a surface. If for every curve α on Σ, Σ \ α contains

a finite-type nondisplaceable surface, then there is no graph Γ whose vertices are

curves on Σ such that the orbit map MCG(Σ) → Γ is a quasi-isometry.

Proof. For the orbit map to be a quasi-isometry, the preimage of every bounded set

in Γ must be coarsely bounded in MCG(Σ). In particular, the stabilizer of a curve

is the preimage of a single vertex, so it must be coarsely bounded.

Mann and Rafi give three basic examples (Examples 2.4 and 2.5 of [MR19]) of
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nondisplaceable surfaces, all of which we will use:

1. If Σ has finite positive genus, then any subsurface of Σ with the same genus

as Σ is nondisplaceable.

2. If X is a MCG(Σ)-invariant, finite set of ends of Σ of cardinality at least 3,

then any surface that separates the elements of X into different complementary

components is nondisplaceable.

3. If X and Y are disjoint, closed MCG(Σ)-invariant sets of ends of Σ with X

homeomorphic to a Cantor set, then a subsurface homeomorphic to a pair of

pants containing elements of X in two complementary components, and all of

Y in the third, is nondisplaceable.

The easiest place to apply Corollary 3.5.12 is in the case of finite-genus surfaces:

Lemma 3.5.13. If Σ has finite positive genus, then for any graph Γ whose vertices

are curves on Σ, the orbit map MCG(Σ) → Γ is not a quasi-isometry.

Proof. Let S be a connected, finite-type subsurface of Σ with the same genus as Σ.

If α is disjoint from S, or if α is nonseparating in S, S \ α is still connected and

nondisplaceable. If α separates S into two components, one of which has the same

genus as Σ, then that component is connected and nondisplaceable.

Finally, if α separates S into two components, both of which have positive genus,

consider the surface S \ α. For any f ∈ MCG(Σ), both components of f(S \ α)

contain nonseparating curves, and every nonseparating curve on Σ intersects S \ α.
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Therefore both components of f(S \ α) intersect S \ α, making it a nondisplaceable

surface. The result follows by Corollary 3.5.12.

Next consider the case where Σ has at least three—but finitely many—maximal

ends.

Lemma 3.5.14. If Σ has at least 3 but finitely many maximal ends, then for any

graph Γ whose vertices are curves on Σ, the orbit map MCG(Σ) → Γ is not a

quasi-isometry.

Proof. Let S be a finite-type surface separating the maximal ends of Σ into distinct

complementary components. If α is nonseparating in or disjoint from S, then S \ α

is still connected and nondisplaceable. If α separates S into two components, one of

which still separates the maximal ends of Σ into distinct complementary components,

then that component is connected and nondisplaceable.

Otherwise, there are at least two maximal ends of Σ in both components of

Σ \ α. Fix f ∈ MCG(Σ). Since there are at least two maximal ends of Σ in both

components of Σ \ f(α), either f(α) = α or f(α) intersects S \ α. Since f(α)

is a boundary component of both components of S \ α, it follows that S \ α is

nondisplaceable. The result follows by Corollary 3.5.12.

Now we move to the case of infinitely many maximal ends:

Lemma 3.5.15. If Σ has infinitely many maximal ends, not all equivalent, then for

any graph Γ whose vertices are curves on Σ, the orbit map MCG(Σ) → Γ is not a
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quasi-isometry.

Proof. By Fact 3.2.4 the equivalence class of every maximal end is either finite or a

Cantor set. If every such equivalence class is finite then there are infinitely many of

them; in particular let x, y, z be three nonequivalent maximal ends with E(x), E(y),

and E(z) all finite. Then let X = E(x), Y = E(y), and Z = E(z). If on the other

hand there is some maximal end x such that E(x) is a Cantor set, pick a maximal

end z not equivalent to x, and let X ⊔ Y be nonempty sets partitioning E(x), and

let Z = E(z).

In either case above, let S be a finite-type surface with X, Y , and Z in distinct

complementary components. For any curve α, one component of S \ α still has X,

Y , and Z in distinct complementary components, so we may assume S is contained

in Σ\α. By construction, S is connected and nondisplaceable, and the result follows

by Corollary 3.5.12.

There is only one more case, which requires a bit more subtlety as well as the

condition of tameness:

Lemma 3.5.16. If Σ has tame end space and two non-equivalent maximal ends

e+ and e−, then for any graph Γ whose vertices are curves on Σ, the orbit map

MCG(Σ) → Γ is not a quasi-isometry.

Proof. If MCG(Σ) does not have a well-defined quasi-isometry type, then such a

quasi-isometry cannot be defined and we are done; so we may assume it does. Then
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we can apply Lemma 3.5.8 to find immediate predecessors to e+ and e−. If e+ and

e− had the same predecessors, Σ would be translatable by Lemma 3.5.9, which would

imply e+ ∼ e−, a contradiction. Thus without loss of generality we may assume

there is some immediate predecessor x of e+ such that x ̸≼ e−.

Let V be a stable neighborhood of x. Since x is maximal in V , E(x) ∩ V is

either a singleton or a Cantor set. We claim it is in fact a Cantor set. Suppose by

contradiciton that E(x) ∩ V is discrete; since x is an immediate predecessor of e+

and x ̸≼ e−, this means that E(x) is countable, with a unique accumulation point

at e+. Find a subsurface K as in Fact 3.2.9, with complementary components A+

and A− containing e+ and e− respectively. Note that all but finitely many elements

of E(x) are in the end set of A+. Let B be a subsurface of A+ containing e+, and

such that the end space of A+ \ V contains a single element of E(x). Then there is

some f ∈ MCG(Σ) such that A+ ⊆ f(B). But Σ \ A+ and Σ \ B have a different

number of elements of E(x). This contradiction proves our claim.

Since E(x)∩ V is a Cantor set, x is an immediate predecessor of e+, and x ̸≼ e−,

E(x) must be a countable sequence of disjoint Cantor sets converging to e+. Let

X ⊔ Y be a partition of E(x) ∪ {e+} into nonempty clopen sets, and let Z = {e−}.

Then a finite-type surface S that has X, Y , and Z in distinct complementary

components will be nondisplaceable. As in the proof of Lemma 3.5.15, removing a

single curve α from S does not change this property, and so the result follows by

Corollary 3.5.12.
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These lemmas together give the main result of this subsection:

Proposition 3.5.17. If Σ has tame end space and either finite positive genus, two

or infinitely many maximal ends that are not all equivalent, or at least three but

finitely many maximal ends, then for any graph Γ whose vertices are curves on Σ,

the orbit map MCG(Σ) → Γ is not a quasi-isometry.

Proof. If Σ has finite positive genus, this is Lemma 3.5.13. If it has two maximal

ends, this is Lemma 3.5.16. If it has at least three but finitely many maximal

ends, this is Lemma 3.5.14. If it has infinitely many maximal ends, this is Lemma

3.5.15.

3.6 The plane minus a Cantor set

We now turn from the general case of translatable surfaces, of which there are

uncountably many examples only a few of which have received specific notice, to a

much more specific but more well-studied case. In this section we focus exclusively

on the surface Σ = R2 \ C, where C is a Cantor set embedded in the plane. In

this instance we will not have to go looking for a suitable graph, as one has been

provided for us in the form of the loop graph defined by Bavard [Bav16]. We will

show in this section that the mapping class group of this surface is quasi-isometric

to its loop graph.

Note that the surface Σ has a unique isolated end, usually called ∞ because it is
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the “point at infinity” of R2.

Definition 3.6.1. A loop in Σ is an embedded line in Σ with both ends approaching

∞, considered up to isotopy and orientation reversal. The loop graph L(Σ) of Σ is

the graph whose vertices are loops in Σ, with two loops connected by an edge if they

have disjoint representatives.

It was shown by Bavard [Bav16] that the loop graph19 is connected and Gromov-

hyperbolic. A subsequent paper of Bavard and Walker [BW18] characterized the

Gromov boundary of L(Σ). The high degree of symmetry possessed by Σ also makes

the following transitivity lemma possible.

Lemma 3.6.2. If α, β, and γ are loops in Σ, with β and γ both in the same

component of Σ \ α, then there is a mapping class f ∈ MCG(Σ) such that f(α) = α,

f(β) = γ, and f restricts to the identity on the component of Σ \ α not containing

β and γ.

Proof. Observe that every loop on Σ is separating. If we cut Σ along α and β, we

get three subsurfaces: one whose only boundary component is α, one whose only

boundary component is β, and one with both boundary components. The end space

of each of these subsurfaces is a nonempty clopen subset of a Cantor set, which

must be itself a Cantor set. Since the surface Σ has no genus, this is a complete

19Many papers deal interchangably with the loop graph as defined here and the ray graph, whose

vertices are embedded lines with one end at ∞ and the other in the Cantor set. These are shown

by Bavard [Bav16] to be quasi-isometric.
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description of the subsurfaces. The same argument applies when cutting the surface

along α and γ, so we can fix the surface bounded by α, map the surface bounded

by β to that bounded by γ, and map the surface bounded by both α and β to that

bounded by α and γ.

The following lemmas are analogs of Lemmas 3.3.7 and 3.3.8 in the setting of Σ:

Lemma 3.6.3. Let α be a loop on Σ and α− and α+ the two components of Σ \ α.

Then there is a mapping class r ∈ MCG(Σ) such that after an isotopy r(α+) = α−,

r(α−) = α+, and r|α is orientation-reversing.

Proof. In a tubular neighborhood of α, which is a punctured anulus, r is just a

rotation by π about the line running down the middle of that punctured annulus, as

in Figure 3.4. Since α separates the end space of Σ into two nonempty clopen sets,

the end spaces of α− and α+ are homeomorphic and so this r can be extended to all

of Σ.

Lemma 3.6.4. Let α be a loop on Σ and V an identity neighborhood in MCG(Σ).

Let α− and α+ be the two components of Σ \ α. Then there are mapping classes

h+, h− ∈ MCG(Σ) such that Vα− ⊆ h−1
+ V h+ and Vα+ ⊆ h−1

− V h−. In addition,

h+(α) ⊆ α+ and h−(α) ⊆ α−.

Proof. Since the sets {VS | S ⊆ Σ has finite type} form a neighborhood basis of the

identity in MCG(Σ), there is some finite-type S ⊆ Σ such that VS ⊆ V . By growing
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S—and thus shrinking VS—we can ensure that the loop α and its basepoint are

included in S.

S is a finite-type surface of genus zero, with n boundary components for some

n. In particular, it must have at least one boundary component in α− and at least

one boundary component in α+. Pick two new arcs β ⊆ α− and γ ⊆ α+ and such

that both β− ∩ S and γ+ ∩ S are disks, as in Figure 3.8. Using Lemma 3.6.2, let

h+, h− ∈ MCG(Σ) such that h+ fixes β and maps α to γ, while h− fixes γ and maps

α to β.

It is not quite true that S ⊆ h+(α)− = γ− as in the proof of Lemma 3.3.8.

However, the intersection S ∩ γ+ is a disk, and so any homeomorphism that restricts

to the identity on γ− can be homotoped to one restricting to the identity on S,

and thus V(h+(α))− = Vγ− ⊆ VS ⊆ V . It follows that Vα− ⊆ h−1
+ V h+ and likewise

Vα+ ⊆ h−1
− V h−.

These are enough ingredients to prove our main theorem for this section:

Theorem 3.6.5. Let Σ = R2 \ C be the plane minus a Cantor set. Then MCG(Σ)

is quasi-isometric to L(Σ).

Proof. The loop graph is known to be connected by work of Bavard [Bav16], and

the action of MCG(Σ) on it is transitive by Lemma 3.6.2. To apply Lemma 3.2.2 it

remains to show that for α a loop on Σ, the set A = {f ∈ MCG(Σ) | d(α, f(α)) ≤ 1}

is coarsely bounded. Fix such an α, and refer to the components of Σ \ α as α+ and

α−.
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Figure 3.8: A finite-type subsurface (shaded), with the loop α in blue, the loop β in

red, and the loop γ in magenta.

We will of course be using Lemma 3.2.1. Fix an identity neighborhood V in

MCG(Σ), and let r and h be as in Lemmas 3.6.3 and 3.6.4. Let F = {r−1, h+, h−,

h−1
+ , h−1

− }. We will show that A ⊆ (FV )8.

Fix f ∈ A. First consider the case where d(α, f(α)) = 0. After possibly

replacing f with rf , we may assume f restricts to the identity on α, and so it

decomposes as f = f−f+, where f− ∈ Vα− and f+ ∈ Vα+ . Then f = f−f+ ∈

Vα−Vα+ ⊆ h−1
+ V h+h

−1
− V h− ⊆ (FV )4. Since we may have replaced f with rf , this

gives f ∈ (FV )5 in general when d(α, f(α)) = 0.

Now suppose d(α, f(α)) = 1. That means α and f(α) are disjoint. Without

loss of generality we assume that f(α) ⊆ α+; if not then we need merely replace

h+ with h− below. By Lemma 3.6.2 there is some g ∈ Vα− such that g(α) = α and
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g(h+(α)) = f(α). Let f0 = h−1
+ g−1f . By construction f0(α) = α so by the previous

paragraph f0 ∈ (FV )5. Then f = gh+f0 ∈ Vα−h+(FV )
5 ⊆ h−1

+ V h+h+(FV )
5 ⊆

(FV )8.

Thus A ⊆ (FV )8, so A is coarsely bounded, and then by Lemma 3.2.2 the action

of MCG(Σ) on L(Σ) induces a quasi-isometry.

3.6.1 Some consequences of this quasi-isometry

Theorem 3.6.5 has some interesting immediate consequences. The first is hyperbolic-

ity; as mentioned in the introduction, L(Σ) is known to be δ-hyperbolic.

Corollary 3.6.6. Let Σ = R2 \ C. Then MCG(Σ) is non-elementary δ-hyperbolic.

Proof. The mapping class group is quasi-isometric to the loop graph, which was

shown by Bavard [Bav16] to be non-elementary δ-hyperbolic.

Since the translatable surfaces are known to have non-hyperbolic mapping class

groups, this proves that the mapping class groups are not quasi-isometric.

Corollary 3.6.7. The mapping class group of R2 \ C is not quasi-isometric to that

of any translatable surface.

Proof. The translatable curve graph is never non-elementary hyperbolic by the

results of Horbez, Qing, and Rafi [HQR20], and thus neither is the mapping class

group of any translatable surface. Thus by Corollary 3.6.6 the mapping class group

of a translatable surface is not quasi-isometric to that of R2 \ C.
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For the final interesting consequence, we introduce some concepts from the world

of locally compact groups. A generating set S for a group G can be thought of as a

homeomorphism φ : FS → G from the free group on the set S to G. A collection

of words R ⊆ FS that normally generates the kernel of this map is called a set of

relators and we often write G as a group presentation G = ⟨S | R⟩. When the sets

S and R are both finite, we say the group G is finitely presented. Cornulier and de

la Harpe [CdlH16] introduce the following generalization of this notion.

Definition 3.6.8. A group presentation G = ⟨S | R⟩ is a bounded presentation if

the words in R have bounded length. In this case we say G is boundedly presented

over the set S.

Note that a finite presentation is simply a bounded presentation over a finite

generating set. Cornulier and de la Harpe call a group compactly presented if it has

a bounded presentation over a compact generating set, and by analogy we might call

a group coarse-boundedly presented if it has a bounded presentation over a coarsely

bounded generating set. Crucially, Cornulier and de la Harpe show the following

close relationship between bounded presentations word metrics.

Fact 3.6.9 (Proposition 7.B.1 of [CdlH16]). Let G be a group endowed with a

generating set S. Then G is boundedly presented over S if and only if the Rips

complex Ripsc(G, dS) is simply connected for some c.

It follows directly that the mapping class group of the plane minus a Cantor set

has a coarsely bounded presentation.
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Corollary 3.6.10. Let Σ = R2 \C be the plane minus a Cantor set. Then MCG(Σ)

has a coarsely bounded presentation.

Proof. By Corollary 3.6.6, the mapping class group MCG(Σ) is δ-hyperbolic with

respect to (any) coarsely bounded generating set S. Then for high enough c, the Rips

complex Ripsc(G, dS) is contractible, and so by Fact 3.6.9 MCG(Σ) has a bounded

presentation over S.
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