Essays In Mortgage Markets And Public Investment Cycles

Sumedh Ambokar
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Economics Commons

Recommended Citation
https://repository.upenn.edu/edissertations/4121

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4121
For more information, please contact repository@pobox.upenn.edu.
Essays In Mortgage Markets And Public Investment Cycles

Abstract
In this dissertation, the first two chapters on mortgage markets show that statistical discrimination and market power derived by lenders from mortgage search costs of borrowers in the US have a large welfare cost for a borrower and are important sources of refinancing inaction. The third chapter shows that a winner-take-all electoral system is better than a proportional system for economic growth-enhancing public investment since it reduces the likelihood and size of coalition governments. Chapter 1 investigates how statistical discrimination by lenders, a tool that separates borrowers who differ in search intensity, affects welfare and monetary policy transmission to consumption. A general equilibrium model with two types of borrowers who differ in the number of lenders they meet is built and calibrated. Statistical discrimination carries a significant welfare cost for a borrower, accounting for two-thirds of the difference in welfare between the two types. Two ways of increasing mortgage search, an explicit goal of the CFPB, have opposite effects on welfare. Statistical discrimination halves non-shoppers’ consumption response to a monetary policy shock but does not increase shoppers’ response. Chapter 2 explores the role of search costs in explaining refinancing inaction, focusing on the 2009-2015 period when mortgage rates declined significantly. A dynamic discrete choice model of refinancing and search decisions is estimated using a proprietary panel data set. Search costs significantly inhibit refinancing through two channels. First, higher search costs directly increase refinancing cost. Second, they also indirectly increase market power of lenders, raising the offered rates. The indirect market power effect dominates. A centralized refinance market can significantly increase refinancing activities by eliminating market power, even if the refinancing costs remain unchanged. Chapter 3 finds that during an election cycle, public investment is concave in months to election and reduces in the share of coalition partners in government and the perceived government corruption level. To explain these facts, a model of coalition governments is built which adds endogenous early elections to models of political competition. Away from elections, coalition governments invest less to avoid an early election. As election approaches, even strong governments invest less to signal honesty.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Economics

First Advisor
Harold L. Cole

Keywords
Coalition Governments, Monetary Policy Transmission, Mortgage Refinancing Inaction, Mortgage Search Costs, Statistical Discrimination

Subject Categories
Economics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4121
ESSAYS IN MORTGAGE MARKETS AND PUBLIC INVESTMENT CYCLES

Sumedh Ashok Ambokar

A DISSERTATION

in

Economics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2020

Supervisor of Dissertation

Harold L. Cole

Harold L. Cole, Professor of Economics

Graduate Group Chairperson

Jesús Fernández-Villaverde

Jesús Fernández-Villaverde, Professor of Economics

Dissertation Committee:
Harold L. Cole, Professor of Economics
Aviv Nevo, George A. Weiss and Lydia Bravo Weiss University Professor, Wharton School of Business and Department of Economics
Benjamin Keys, Rowan Family Foundation Associate Professor, Real Estate Department, Wharton School of Business
Dedicated to my family and friends
ACKNOWLEDGEMENT

I am extremely grateful to my advisor, Harold L. Cole, for his invaluable guidance, patience and support throughout these years. His kind advice and sharp intuition has greatly shaped and improved my dissertation. I also thank my other committee members, Aviv Nevo and Benjamin Keys. Their detailed feedback and insights have been instrumental in making this dissertation rigorous.

I also thank Alessandro Dovis who shaped my early dissertation work and has always been supportive and perceptive. I thank José-Víctor Ríos-Rull for his critical feedback and intuition that played a major role in shaping my work. I thank Dirk Krueger for his precise feedback during these years. I thank Guillermo L. Ordoñez for his feedback and support throughout these years.

I thank all the professors of the economics department for always being supportive and approachable to all the graduate students. I also thank Kelly Quinn and Gina Conway for being very efficient at taking care of all the administrative duties.

I thank my friends in my cohort at Penn for their moral support and insightful discussions. The time spent with them enriched my experience at Penn. I also thank my many other long-time friends for their unconditional friendship over these years. Lastly, but by no means least, I thank my entire family for always believing in me and supporting me in every way possible through thick and thin.
ABSTRACT

ESSAYS IN MORTGAGE MARKETS AND PUBLIC INVESTMENT CYCLES

Sumedh Ashok Ambokar

Harold L. Cole

In this dissertation, the first two chapters on mortgage markets show that statistical discrimination and market power derived by lenders from mortgage search costs of borrowers in the US have a large welfare cost for a borrower and are important sources of refinancing inaction. The third chapter shows that a winner-take-all electoral system is better than a proportional system for economic growth-enhancing public investment since it reduces the likelihood and size of coalition governments. Chapter 1 investigates how statistical discrimination by lenders, a tool that separates borrowers who differ in search intensity, affects welfare and monetary policy transmission to consumption. A general equilibrium model with two types of borrowers who differ in the number of lenders they meet is built and calibrated. Statistical discrimination carries a significant welfare cost for a borrower, accounting for two-thirds of the difference in welfare between the two types. Two ways of increasing mortgage search, an explicit goal of the CFPB, have opposite effects on welfare. Statistical discrimination halves non-shoppers’ consumption response to a monetary policy shock but does not increase shoppers’ response. Chapter 2 explores the role of search costs in explaining
refinancing inaction, focusing on the 2009-2015 period when mortgage rates declined significantly. A dynamic discrete choice model of refinancing and search decisions is estimated using a proprietary panel data set. Search costs significantly inhibit refinancing through two channels. First, higher search costs directly increase refinancing cost. Second, they also indirectly increase market power of lenders, raising the offered rates. The indirect market power effect dominates. A centralized refinance market can significantly increase refinancing activities by eliminating market power, even if the refinancing costs remain unchanged. Chapter 3 finds that during an election cycle, public investment is concave in months to election and reduces in the share of coalition partners in government and the perceived government corruption level. To explain these facts, a model of coalition governments is built which adds endogenous early elections to models of political competition. Away from elections, coalition governments invest less to avoid an early election. As election approaches, even strong governments invest less to signal honesty.
Table of Contents

Acknowledgement ... iv

Abstract ... v

List of Tables .. ix

List of Illustrations ... xi

1 Mortgage Search Heterogeneity, Refinancing Decisions and Monetary Policy
 Transmission to Consumption ... 1
 1.1 Data and Analysis ... 7
 1.2 Model .. 16
 1.3 Steady State Analysis ... 31
 1.4 Effects of Statistical Discrimination in Steady State 36
 1.5 Effect of increasing mortgage search 43
 1.6 Monetary Policy Transmission to Consumption 48
 1.7 Conclusion .. 53

2 Inaction, Search Costs and Market Power in the US Mortgage Market . . . 56
 2.1 Data ... 64
 2.2 Descriptive Evidence ... 66
 2.3 An Equilibrium Model of Mortgage Refinancing and Search Decisions 77
 2.4 Estimation .. 89
 2.5 Estimation Results ... 94
 2.6 A Centralized Refinance Market 105
 2.7 Conclusion ... 107
LIST OF TABLES

1.1 Unexplained Mortgage Rate Dispersion ... 11
1.2 Those who consider only one lender get higher rate & lower amount 14
1.3 Benchmark calibration .. 30

3.1 Summary Statistics ... 117
3.2 Fisher-type Panel Unit Root Test ... 120
3.3 Impact of Election Cycles, Coalition Share and Corruption Perception 120
3.4 Summary Statistics Across Voting Systems 121
3.5 Summary Statistics Across Government Systems 121
3.6 Parameters for numerical example ... 146

A.1 Loan Age at which it is refinanced is concave in the State 154
A.2 Mortgage lending cost, Average mortgage rate \propto Federal funds rate . 155
A.3 Home equity extraction \propto Mortgage rate reduction, Mortgage search 156
A.4 Untargetted Relative Borrower Distribution Means 157
A.5 Mean borrower type ratio, rate, refinance frequency and home equity 158
<table>
<thead>
<tr>
<th>Illustration Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Effective distribution of lenders in benchmark model</td>
<td>29</td>
</tr>
<tr>
<td>1.2</td>
<td>Ratio of mass of borrowers in steady state of benchmark model</td>
<td>32</td>
</tr>
<tr>
<td>1.3</td>
<td>Lifetime refinance policy in steady state of benchmark model</td>
<td>34</td>
</tr>
<tr>
<td>1.4</td>
<td>Age-wise state & refinancing, with & without statistical discrimination</td>
<td>39</td>
</tr>
<tr>
<td>1.5</td>
<td>Relative mass of borrowers, with & without statistical discrimination</td>
<td>40</td>
</tr>
<tr>
<td>1.6</td>
<td>Welfare cost of statistical discrimination</td>
<td>42</td>
</tr>
<tr>
<td>1.7</td>
<td>Welfare difference between the two types of borrowers</td>
<td>43</td>
</tr>
<tr>
<td>1.8</td>
<td>Effective distribution of lenders when Type 2 meet 3 lenders</td>
<td>46</td>
</tr>
<tr>
<td>1.9</td>
<td>Borrower’s age-wise state in steady state when Type 2 meet 3 lenders</td>
<td>47</td>
</tr>
<tr>
<td>1.10</td>
<td>Welfare cost of statistical discrimination when Type 2 meet 3 lenders</td>
<td>48</td>
</tr>
<tr>
<td>1.11</td>
<td>Monetary Policy Transmission to Consumption: Benchmark</td>
<td>50</td>
</tr>
<tr>
<td>1.12</td>
<td>Monetary Policy Transmission: No Statistical Discrimination</td>
<td>51</td>
</tr>
<tr>
<td>2.1</td>
<td>Dynamic of Refinancing Decisions</td>
<td>68</td>
</tr>
<tr>
<td>2.2</td>
<td>Incentive to Refinance</td>
<td>69</td>
</tr>
<tr>
<td>2.3</td>
<td>Interest Rate Residual</td>
<td>71</td>
</tr>
<tr>
<td>2.4</td>
<td>Number of Mortgage Inquiries Distribution</td>
<td>72</td>
</tr>
<tr>
<td>2.5</td>
<td>Search Intensity and Interest Rate Across Borrowers’ Creditworthiness</td>
<td>74</td>
</tr>
<tr>
<td>2.6</td>
<td>Search Intensity and Refinance Probability</td>
<td>76</td>
</tr>
<tr>
<td>2.7</td>
<td>A Borrower Refinancing and Search Decision Tree</td>
<td>80</td>
</tr>
</tbody>
</table>
2.8 Distribution of Borrowers’ Creditworthiness .. 95
2.9 Estimates of Approval Probabilities ... 96
2.10 Search Cost Distribution ... 97
2.11 Estimates of Search Costs in Refinancing Costs .. 100
2.12 Search Costs and Refinancing ... 101
2.13 Direct versus Indirect Effect of Search Costs on Refinancing 104
2.14 A Centralized Refinance Market .. 106

3.1 %∆PI/GDP during an election cycle with different coalition shares 121
3.2 Timing of events ... 133
3.3 Investment Policy ... 147
3.4 Investment Policy at High Share ... 148
3.5 Investment Policy at Low Share ... 149
3.6 Means in the Simulated Data ... 150

A.1 Search Behavior according to NSMO ... 155
A.2 Mortgage lending cost, Average mortgage rate ∝ Federal funds rate 155
A.3 Mortgage search, home equity extraction & rate spread across MSA-years156
A.4 Untargetted Borrower Distributions ... 157
A.5 Refinancing policy in Benchmark vs. With more Type 2 borrowers 158
A.6 Monetary Policy Transmission to Consumption: More Type 2 borrowers159
A.7 Monetary Policy Transmission to Consumption: Type 2 meet 3 lenders 159
Chapter 1

Mortgage Search Heterogeneity, Refinancing Decisions and Monetary Policy Transmission to Consumption1.1

According to the National Survey of Mortgage Originations (NSMO), 52\% of US homeowners consider only one lender when refinancing their mortgage. We refer to them as non-shoppers. In the data described below, we find that non-shoppers pay higher rates. Two possible explanations exist. First, non-shoppers will see only one offered rate, leading to higher accepted rates - a direct effect of reduced search. Second, lenders may use available information to statistically discriminate - a less intuitive indirect effect. Lenders can observe the current mortgage of a refinancer. If they know how many shoppers and how many non-shoppers hold the same mortgage, they can evaluate the probability that the refinancer will not search for another quote.

1.1Coauthored with Kian Samaee.
The higher this probability, the higher the rate that lenders offer. A higher offer rate also reduces the incentive to refinance. With repeated refinancing, the difference in rates between shoppers and non-shoppers would continue to increase, making it easier to statistically discriminate.

In this environment, we ask the following questions. First, what is the welfare cost of statistical discrimination to a borrower? How does this cost change if either one-third of non-shoppers or all shoppers search for one more quote? Both increase mortgage search, an explicit aim of the Consumer Financial Protection Bureau (CFPB), but in different ways. Second, how does variation in the ability to statistically discriminate change monetary policy transmission to consumption? Consuming the home equity extracted via mortgage refinancing has been found to be an important channel for this transmission.

To answer these questions, we build a general equilibrium model with two types of mortgage borrowers. The first type, the non-shoppers, consider an offer from only one lender. The second type, the shoppers, consider offers from two lenders. A borrower who refinances meets a random subset of identical lenders simultaneously before getting any offer. Short-lived lenders do not know the type of the borrower they meet but they observe her state (current rate and mortgage balance) and know the mass of each type in any state. This enables them to statistically discriminate. In any state, the refinancing market is similar to the product market in Burdett and Judd (1983), which leads to rate dispersion among identical borrowers. The production side of the economy consists of standard New-Keynesian firms. This allows the monetary authority’s nominal changes to have significant real changes.

We calibrate the parameters governing search cost and the fraction of borrowers who are shoppers to match the average years to refinance a mortgage according to the Freddie Mac and Fannie Mae’s Single Family Loan-Level Dataset (GSE) and
the fraction of refinancers who are shoppers according to the NSMO, while other parameters are chosen from the literature. To answer the first question, the following is done. Comparing borrower welfare in the benchmark economy with that in a counterfactual economy where their current state is unobservable (thus removing the ability to statistically discriminate) allows us to evaluate the welfare cost of statistical distribution. Repeating this by changing the benchmark economy to a counterfactual economy where one-third of non-shoppers consider offers from two lenders and to another counterfactual economy where shoppers consider offers from three lenders answers how the welfare cost changes with these two ways of increasing mortgage search. To answer the second question, we look at how agents in the steady states of the benchmark and the three counterfactual economies respond to an expansionary monetary policy shock: an unexpected 25 basis points reduction in the nominal risk-free rate, which is also the cost of lending in the model.

We conclude that statistical discrimination has a large welfare cost based on three steady state results. First, a borrower is willing to pay about $3,300 (30% of quarterly income) to make her current state unobservable and thus remove lenders’ ability to statistically discriminate. Non-shoppers are willing to pay much more ($5,700). This cost is small when they first purchase a home, but quadruples within eight years due to the increasing isolation of non-shoppers at high rates with each round of refinancing. On the other hand, shoppers are not isolated at low rates because in equilibrium, many lenders post low rates (Pareto distribution) which non-shoppers can also get; moreover, with repeated refinancing, many non-shoppers eventually end up with low rates. Therefore, shoppers do not benefit much from statistical discrimination. Thus, the ability to statistically discriminate causes a large shift in welfare from borrowers to lenders. In the data, the rate distribution is significantly left-skewed (close to Pareto), which validates this result. Also, in steady state, the time after which a borrower refinances again is U-shaped in her state. Non-shoppers who are isolated at
high rates wait and collect home equity before refinancing again, borrowers who get lower rates refinance sooner as there are more shoppers with the same rates and thus the rate reduction offered is higher, and once borrowers get low enough rates, they do not refinance again. This U-shaped relation is also observed in the data, validating the mechanism.

Second, statistical discrimination accounts for two-thirds of the difference in welfare between the two types. A non-shopper is willing to pay $7,700 to become a shopper. This declines to $2,300 if the current state is unobservable. Third, the two ways of increasing mortgage search change the ability to statistically discriminate (and thus the associated welfare cost) in opposite directions. If one-third of non-shoppers consider two lenders, the welfare cost becomes two-thirds ($2,100) of that in the benchmark; but if shoppers consider three lenders, the welfare cost quadruples ($13,800). If shoppers consider three lenders, the increased isolation benefits shoppers - they have a negative welfare cost ($-220) and statistical discrimination now accounts for three-fourths of the difference in welfare between the two types.

We find that statistical discrimination reduces the monetary policy transmission to consumption, especially by reducing the refinancing response of non-shoppers. There is hardly any pass-through of rate reduction to non-shoppers who are isolated at high rates. Thus, few of them refinance in response to a monetary policy shock. Even when they do, they extract much smaller home equity they collect in steady state compared to shoppers. Hence, non-shoppers have a smaller consumption response.

In the two counterfactual economies that have higher mortgage search levels than the benchmark economy, the consumption response of non-shoppers changes in opposite directions. Presented in the order of increasing ability to statistically discriminate, the four economies are as follows: unobservable current state, one-third of non-shoppers consider two lenders, benchmark, and shoppers consider three lenders. In these four
economies, a non-shopper’s consumption increases by 1.21%, 0.93%, 0.57% and 0.31% respectively in response to the monetary shock mentioned above.

In contrast, shoppers have a bigger consumption response than non-shoppers in all economies except the one with unobservable current state, since they collect more home equity in steady state as a result of getting lower rates sooner. In the counterfactual economy with unobservable current state, both types have very similar home equity in steady state but non-shoppers have slightly higher rates due to their lack of search. Without statistical discrimination, non-shoppers obtain a much larger rate reduction and thus they respond much more than non-shoppers in the benchmark. For shoppers, there is not much change in isolation across the four economies. In the counterfactual economies with higher mortgage search levels, the aggregate reduction in market power of lenders results in more home equity and thus in a greater consumption response among shoppers than in the benchmark economy. A shopper’s consumption increases by 0.88%, 1.15%, 0.84% and 0.92% respectively in response to the same shock in the four economies mentioned earlier. Thus, statistical discrimination changes monetary policy transmission to consumption at the aggregate level as well as at the distributional level.

Consistent with the model, our empirical findings imply that otherwise identical mortgage borrowers who refinance with different unobservable search intensities get very different rates and borrow very different amounts. There is a wide range of mortgage rates (standard deviation of 26 basis points) that a refinancer gets after controlling for risk factors, lender, location, and month of origination from the GSE data. Discount points, weekly variation, and a proxy for unobserved credit risk explain only a small part of this variation. In the NSMO, non-shoppers borrow $2,750 less and pay 8 basis points more than shoppers. This difference in rates falls to 3 basis points in the mortgage market for home purchases, where there is no current mortgage that
lenders can use to statistically discriminate. It is difficult to identify whether a borrower will consider one or more than one lender: a probit classifier with more than 80 borrower characteristics is unable to classify 37% borrowers correctly. We use the Home Mortgage Disclosure Act Loan Application Register (HMDA LAR) to find that even before NSMO started in 2013, MSAs with above median mortgage search activity in a year had average mortgage rates that were 6 basis points lower than those of MSAs with search levels below the median, and home equity extraction rates that were 7.5% higher. Consistent with the relationship between a borrower’s state and the time after which she refinances in the model, we find in the GSE data that the number of months after origination at which borrowers refinance is U-shaped in the product of their current mortgage rate and balance. Without targeting, the distribution of borrowers in steady state matches that observed in the data at the end of 2015 when the cost of mortgage lending was relatively stable, supporting our model’s assumptions and results.

In our related work in Chapter 2, we empirically explore the role of search costs in explaining inaction in refinancing. Hence, we estimate the search cost distribution of mortgage borrowers in the US and find that search costs, and not creditworthiness, inhibit mortgage refinancing mainly due to the resulting increase in market power of lenders. Here, the focus is on understanding the effects of the subtle mechanism of statistical discrimination. Hence, we enable lenders to statistically discriminate and find that this mechanism has a large impact on welfare and significantly affects monetary policy transmission. In both papers, we find that lenders’ actions play a huge role in determining borrowers’ actions and thus in determining the outcomes in the US mortgage market.

We show that considering mortgage search heterogeneity and statistical discrimination in a dynamic general equilibrium framework is important to understanding
agents’ decisions in the US mortgage market and their aggregate effects. This subtle mechanism also affects the distribution of home equity studied in Beraja et al. (2018). Dispersion in rates affect the potential savings studied in Eichenbaum et al. (2018). As in Wong (2019), younger borrowers are more likely to refinance than older ones. Chen et al. (2013) consider labor income risk heterogeneity and Greenwald (2018) considers payment-to-income restrictions, which are left for future work. In empirical work, Woodward and Hall (2012) first documented the substantial price dispersion in mortgage markets. Agarwal et al. (2017) find that search costs and creditworthiness together explain mortgage search behavior whereas our focus in the other paper is on inaction in refinancing. Alexandrov and Koulayev (2018) document price dispersion in reference rates; we use contracted rates. Bhutta et al. (2019) find a wide dispersion in rates even after controlling for discount points, which are not available in our data. Hurst et al. (2016) find that there is no spatial variation in GSE mortgage rates, which we confirm. Our estimate of the lost savings due to lack of mortgage search is in line with that in Keys et al. (2016). Allen et al. (2014) find that competition does not benefit those with high rates. This is similar to the outcome of non-shoppers isolated at high rates in our model.

1.1 Data and Analysis

We use multiple data sources to analyze different issues that motivate this study and become the targets for the model built in the later section. We find that there is a wide spread in the mortgage rates that borrowers get after controlling for their observable as well as unobservable risk factors, lenders, location and time using Freddie Mac and Fannie Mae’s Single Family Loan-Level Dataset. Using the performance data of the loans in this dataset, we find that the refinance behavior of borrowers with respect to their mortgage rate and mortgage balance is consistent with that in the model.
We find that borrowers search for their mortgage differently and their outcomes are significantly different conditional on their search behavior using the National Survey of Mortgage Originations dataset. Finally, since the survey data date backs to only 2013, we use the Home Mortgage Disclosure Act (HMDA) Loan Application Register data to see how search behavior and outcomes for the borrowers relate before 2013, but at an aggregate level, and find similar results. Below we describe our empirical results in detail.

1.1.1 Freddie Mac and Fannie Mae Loans Data

We use the single-family mortgage originations and their performance public dataset from Freddie Mac and Fannie Mae for the period 1999 to 2016. This dataset has about 65% of the mortgages originated in the US during this period. It does not record the search behavior of borrowers. It has over 60 million mortgage originations over this period. This dataset allows us to determine whether lenders offer different rates to observationally equivalent borrowers and the refinance behavior of borrowers with respect to their mortgage rate and mortgage balance.

To focus on how the mortgage rate varies within a particular homogenous type of mortgage, we first restrict the sample to the mortgages originated at fixed rate for 30 years, property is single-family owner-occupied, one-unit, without any prepayment penalty, with no insurance and not super-conforming for borrowers with FICO score at least 660. This product is highly prevalent in the sample and generates a subsample of over 19 million mortgages over the 18 year period. The refinance behavior is also analyzed using this subsample.
Rate dispersion

The GSEs set fees every month for this mortgage product that vary by FICO score, LTV and loan type only. As we restrict the sample to 30 year fixed-rate fully documented mortgages, the only two dimensions of credit quality that should materially affect rates on GSE-guaranteed mortgages in any month are FICO and LTV. So, we follow the procedure used in Hurst et al. (2016) to obtain residual mortgage rates after controlling for borrower characteristics and time fixed effects. In particular, we run:

\[r_{jit} = \alpha_{0j} + \alpha_{1j} D_t + \alpha_{2j} X_{it} + \alpha_{3j} D_t X_{it} + \alpha_{4j} Z_{it} + \epsilon_{jit} \]

where \(r_{jit} \) is the loan-level mortgage rate for a loan made to borrower \(i \) during month of origination \(t \), \(D_t \) is a vector of time dummies based on the month of origination, \(X_{it} \) is a series of FICO dummies (660-679, 680-699, \ldots 780-799, etc.) and a series of LTV dummies (50-54, 55-59, \ldots 80-84, \ldots 95-99, etc.) for borrower \(i \) in period \(t \) and \(Z_{it} \) is the vector (purpose of mortgage, mortgage amount, debt-to-income ratio, cumulative LTV, channel of origination, whether first home, number of borrowers on the mortgage, originator, 3-digit zip code of the property). Sample \(j \) refers to whether the mortgage was purchased by Freddie Mac or Fannie Mae. We run these regressions separately using data from each of our two GSE datasets. The results are summarized in Table 1.1. 92.58% and 94.48% of the variation in interest rates in the two samples is explained by this regression. Combining the errors in prediction from both the samples, the unexplained variance in rates has a standard deviation of 26.67 basis points. Some of this variation is because of weekly variation in rates and discount points bought by borrowers but Bhutta et al. (2019) find that discount points account for about 15 basis points variation and weekly variation in rates within
a month are on average less than 10 basis points. We also check how much of this variation is due to credit risk not observed in the data but observable to the lender via additional documents like the full credit report. Such additional information might predict payment delinquency and eventually default in the future. Hence, as a proxy for this unobserved information, we add the ex-post information about payment delinquency: the maximum number of months that the borrower has been delinquent in the first four years since origination to the vector Z_{it} in the above model. This information is found in the Performance data of these mortgages. We do not consider mortgages originated in the last four years of the sample to remove any bias. The maximum delinquency value is 0 for 90.66% of the borrowers and at least 6 for 1.23% of the borrowers in this sample. We compare the result of this model to the baseline model with the same sample size. We find that there is hardly any reduction in the standard deviation of the unexplained variance. Hence, we conclude that the unexplained variance is not due to unobserved credit risk. Thus, most of the variation found here, about four times 26.67 basis points, remains unaccounted. We repeat this exercise for only refinance mortgages which are 70% of the sample as our focus is on refinances and find that there is hardly any change in results (standard deviation reduces from 26.67 to 25.59 basis points). Hence, the annual mortgage payment of two observationally equivalent borrowers in the same area, month of origination and mortgage lender whose mortgage rate differs by one standard deviation would differ by about $360 on a mortgage of $200,000. Hence, there is a substantial amount of saving for the borrower if she shops harder for the mortgage.

Refinance Behavior

To verify whether the novel finding from the model in Section 1.3.1 is observed in the data, we analyze how the refinance behavior of borrowers varies with respect to
Table 1.1: Unexplained Mortgage Rate Dispersion

<table>
<thead>
<tr>
<th>Dependent Variable: Mortgage Rate</th>
<th>Data: Freddie Mac</th>
<th>Data: Fannie Mae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample from 1999 to:</td>
<td>2016</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td>Origination Month</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICO, LTV dummies</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Other variables at origination (Z_{it})</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Max. delinquency in first 4 years</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Refinances only?</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>.9258</td>
<td>.9537</td>
</tr>
<tr>
<td></td>
<td>.8944</td>
<td>.8950</td>
</tr>
<tr>
<td></td>
<td>.9448</td>
<td>.9572</td>
</tr>
<tr>
<td></td>
<td>.9083</td>
<td>.9084</td>
</tr>
<tr>
<td>Observations</td>
<td>5800608</td>
<td>2618597</td>
</tr>
<tr>
<td></td>
<td>5304385</td>
<td>5293178</td>
</tr>
<tr>
<td></td>
<td>10491098</td>
<td>3061929</td>
</tr>
<tr>
<td></td>
<td>8261540</td>
<td>8260949</td>
</tr>
<tr>
<td>RMSE</td>
<td>.2651</td>
<td>.2521</td>
</tr>
<tr>
<td></td>
<td>.2706</td>
<td>.2699</td>
</tr>
<tr>
<td></td>
<td>.2677</td>
<td>.2591</td>
</tr>
<tr>
<td></td>
<td>.2759</td>
<td>.2758</td>
</tr>
</tbody>
</table>

Note: Unexplained mortgage rate has a wide dispersion (RMSE). The dispersion does not decrease much by adding a proxy for unobserved risk (Max. delinquency in first 4 years) or by looking only at refinances.

...their mortgage rate and mortgage balance. In particular, we find that the refinancing decision of borrowers is not a simple threshold rule but is non-monotonic in their current mortgage rate and mortgage balance. In the model, this is a result of the relative intensity of mortgage search in each submarket characterized by the current mortgage rate and mortgage balance. Hence, in the data, we build a variable which is the product of the current mortgage rate and current mortgage balance divided by 100,000; let us label it ‘state’ and see how it affects the variable ‘loan age’: months after origination at which the loan has been refinanced. If the novel finding in the model is also observable in data, loan age should decrease and then increase in the range of the state variable, which we find is the case using the following regression:

$$LoanAge_i = \alpha + \beta_1 State_i + \beta_2 State_i^2 + \kappa X_i + \delta D_i + \epsilon_{it}$$

where the individual borrower i refines their mortgage in month D_i and had the characteristics X_i (FICO score, LTV, cumulative LTV, debt-to-income ratio, whether first home, number of borrowers on the mortgage) at origination. Mortgages originated before 2011 were considered for this regression so that recency does not impact...
the results. The results of this regression are stated in Table A.1. The state variable in the data ranges between a minimum of 0 and a maximum of 59 (1 percentile: 1.277, 99 percentile: 27.435) in which loan age is decreasing then increasing in the state variable based on the coefficients in the regression. Thus, the novel finding in the model is observed in the data as well, validating the main mechanism in the model.

1.1.2 National Survey of Mortgage Originations

The National Survey of Mortgage Originations (NSMO) conducted since 2013 by the Consumer Finance Protection Bureau (CFPB) and the Federal Housing Finance Agency (FHFA) allows us to look at individual-level search behavior in the mortgage market. It has about 6,000 respondents per year and a total of 24,640 observations in the sample considered. We investigate this search behavior. We check how well can borrower characteristics help identify their search behavior and what are the outcomes for borrowers with different search behavior in terms of the rates and mortgage size they get.

Search Behavior

The survey reveals that half of all borrowers seriously considered only one lender and nearly 80% of them applied to only one lender. A third of the borrowers chose a lender based on past relationships, reputation and having a local branch. Figure A.1 reveals the percentage of mortgage borrowers (on left) and refinancers (on right) who seriously considered 1, 2, 3, 4, 5 or more lenders in the entire sample from 2013 onwards.
Identifying who go to only one lender

To see whether borrower characteristics can help explain their search behavior, we build a dummy variable of whether the mortgage borrower seriously considered one lender or more than one lender. We use more than 80 characteristics of that mortgage like the month of origination, PMMS rate in that month, loan amount category, FICO, LTV, CLTV, DTI, PTI, first homebuyer flag, number of borrowers, whether property is in a metro, age, education, race, income, financial awareness as explanatory variables in a probit model to see whether these variables help predict the dummy variable created. We find that the model classifies 63.42% of the borrowers correctly which is a minor improvement over a random classifier which could classify about 50% correctly.

Outcomes for those who go to only one lender

We find that those who consider one lender borrow about $2850 less at about 5 basis points higher rate on average compared to those who consider more than one. This difference is such that the mortgage payment across these borrowers remains the same. Interestingly, for refinance, the difference increases to 8 basis points compared to 3 basis points for home purchases. This is indicative evidence of statistical discrimination between those who look for multiple lenders versus those who look for one. It is prevalent in the refinance market but not in purchase market in which half of purchasers are first-homebuyers for whom there is no history of mortgage search which is necessary for statistical discrimination studied in this paper.

To find these results, we run regressions to explain the mortgage rate and the loan amount with the dummy variable built earlier and use the more than 80 characteristics of the mortgage mentioned above as controls. We restrict the sample to 30 year fixed
Table 1.2: Those who consider only one lender get higher rate & lower amount
Note: The difference in rate is much bigger for refinancers than for home purchasers, an indication of the effect of statistical discrimination in the refinance market that is absent in home purchasers market (NSMO).

rate, conforming, non-jumbo agency mortgages for these regressions. The results are summarized in Table 1.2. Note that the loan amount is a category variable with $50,000 interval dummies.

1.1.3 HMDA Loan Applications Register

Since the NSMO only tells us about the search behavior of borrowers from 2013 onwards, we look at the Home Mortgage Disclosure Act (HMDA) Loan Application Register public data to see how mortgage search activity affected outcomes similar to those mentioned above for the borrowers. HMDA data has loan applications since 1981 for 90% of the US mortgage market. But the public data does not allow us to identify the borrower and thus we cannot get individual search behavior as in the NSMO.

To overcome this, we build a measure of search activity in a MSA in a year which is defined as the number of applications withdrawn by the borrower or approved by the lender but declined by the borrower divided by the number of applications approved and accepted. We compare how this search activity relates to the home equity extraction rate and the average mortgage rate spread observed in that MSA and year. In particular, using the Freddie Mac and Fannie Mae data, we build a
MSA-year wise variable of mortgage amount originated for home equity extraction divided by the total mortgage amount originated and a MSA-year wise average spread between the mortgage rate and the current coupon rate of a 30 year fixed rate agency MBS in the month of origination which is defined as the secondary market rate in Fuster et al. (2013). This secondary market rate is the cost of mortgage lending. We find that it is tightly connected to the effective federal funds rate which is influenced by Federal Reserve’s open market operations. Hence, in the model, we will set the cost of lending to be equal to the nominal risk-free interest rate in the economy. Figure A.2 shows these rates and the primary mortgage market survey (PMMS) rate since 1994 and Table A.2 shows the results of regressing the primary and secondary mortgage market rates on the effective federal funds rate.

Areas with More Search respond more to a Rate reduction

Even before 2013, higher search is related to lower rates and more home equity extraction. The top panel of Figure A.3 shows how search activity and home equity extraction move together across years and that within a year, in MSAs with above median search activity, home equity extraction has been consistently higher. The bottom panel of Figure A.3 shows that across years, a change in search activity has coincided with an opposing change in the average rate spread and that within a year, across MSAs, above median search MSAs have seen a slightly lower rate spread compared to below median search MSAs.

We formally find this relation in the regression below where the dependent variable H_{imt} is the home equity extracted by an individual normalized by the total amount borrowed in MSA m and month t. Explanatory variables are P_t, the primary mortgage market survey (PMMS) rate in that month, search activity in that MSA-year S_{my}, their interaction term and controls X_{imt}, FICO, LTV, CLTV, DTI, channel, number...
of borrowers on the mortgage, lender, month and MSA. In particular,

\[H_{imt} = \alpha_0 + \alpha_1 P_t + \alpha_2 S_{my} + \alpha_3 P_t S_{my} + \alpha_4 X_{imt} + \epsilon_{imt} \]

The results of the regression are summarized in Table A.3.

Based on this regression, we find that a one standard deviation fall in the PMMS rate results in a rise in the home equity extraction by 6.51% of the standard deviation in a MSA-year with average search activity. But in a MSA-year with 1 standard deviation higher search activity, this response is 8.95% of the standard deviation. Thus, a higher search activity area responds 37% more to a rate reduction than a lower search activity area in terms of home equity extraction.

1.2 Model

Our empirical findings become the basis of our main assumptions in the model and also the targets for our model\(^1\). There are two exogenous types of borrowers: those who meet 1 lender and those who meet 2 lenders at refinancing by paying the same fixed cost. Their search behavior is unobservable to short-lived banks (lenders who take deposits; I will use the terms lenders and banks interchangeably). We focus on the refinance market where statistical discrimination and monetary policy transmission to consumption is more relevant. Hence, the model does not have home purchase

\(^1\)Apart from price dispersion and heterogeneous mortgage search detailed in Section 1.1, it typically takes 1-2 months to get an offer after application during which time another application made would be equivalent to a non-sequential search; According to NSMO, refinancers initiate contact 73% of times; Multiple applications made by refinancer within 45 days shows up as one application in a credit report, thus lenders cannot observe their search behavior in that period; Lenders profit most in the first period by selling to the GSE’s, hence short-lived. Average years to refinance a GSE loan and fraction of refinancers who seriously consider more than one lender in the NSMO survey are used to calibrate two parameters: search cost and fraction of borrowers who meet multiple lenders. Exogenous heterogeneity in search behavior, instead of search cost, also results in a tight match with untargeted distribution in the data.
and mortgage origination decisions. The home size and price are also constants. The refinance mortgage is similar to the product in Burdett and Judd (1983) where a refinancer’s heterogeneous non-sequential random search for identical lenders leads to price dispersion for the product. Standard New-Keynesian firms allow changes in nominal interest rates made by a monetary authority to result in significant changes in real quantities like consumption. Below is the complete description of the model.

1.2.1 Environment

The model has discrete and infinite time indexed by $t = 0, 1, 2, ...$ It has households who are born with a mortgage and make refinancing decisions and lenders who set mortgage rates to maximize their profits. Each agent is described below.

Households

Household Types There is a unit continuum of households who are either borrowers or savers. Each borrower is exogenously either a Type 1 or a Type 2 borrower. A Type 1 borrower meets only one lender at refinancing whereas a Type 2 borrower meets two lenders non-sequentially at refinancing.

Borrowers are more impatient than savers based on their respective rate of discounting the future, i.e., borrowers’ β_b is less than savers’ β_s which are both less than 1. Each agent survives a period with probability $\zeta < 1$ and is replaced by the same types. So, the effective rate of discounting of a household $i \in \{b, s\}$ is $\beta_i^{eff} = \zeta \beta_s$.

In any period, there is a fixed mass $\chi_s < 1$ of savers and $(1 - \chi_s)$ of borrowers. Out of the borrowers, $\alpha(1 - \chi_s)$ are Type 2 borrowers and the rest $(1 - \alpha)(1 - \chi_s)$ are Type 1 borrowers.
Household Commonalities The period utility of a household \(i \in \{b, s\} \) is given by:

\[
u_{a,\hat{\eta}}(c, l) = \log(c) + \xi \log(h) - \psi_i \frac{l^{1+\phi}}{1+\phi} - \hat{\eta}\{a = \mathcal{R}\}
\]

where \(a \in \{\mathcal{R}, \mathcal{N}\} \) is the action taken by the household in that period: whether to refinance (\(\mathcal{R} \)) or not to refinance (\(\mathcal{N} \)), \(\hat{\eta} \) is the utility cost of refinancing, \(\psi_i \) is the household-type specific parameter for disutility of labor \(l \), \(\xi \) is the utility of housing \(h \) relative to the utility from consumption \(c \) and \(\phi \) is the inverse Frisch elasticity. Note that both type of borrowers pay the same utility cost of refinancing but Type 1 meet only one lender whereas Type 2 meet two lenders. Each period, with probability \(\lambda \), a household receives a shock by which the cost of refinancing disappears; otherwise, it is equal to a constant \(\eta \). Thus,

\[
\hat{\eta} = \begin{cases}
\eta & \text{with prob. } 1 - \lambda \\
0 & \text{with prob. } \lambda
\end{cases}
\]

Moreover, each household is born with a house of price \(p \) and size \(h \) which are both constants. Each household pays a maintenance cost of \(\delta ph \) for the house. Each household is endowed with one unit of labor per period.

Household Differences Borrowers are born with a long-term mortgage of fixed size \(m_0 \) at a fixed rate \(r_0 \). They pay down \(\nu < 1 \) fraction of the principal and the interest on the mortgage each period. Each borrower can choose to refinance each period. On the other hand, savers own their homes mortgage-free and they own the firms and the banks in the economy. They have access to one-period nominal bonds and bank deposits.
Banks

Banks cannot observe the type or the refinancing cost of a refinancer that meets them. There are a large number B of banks. They observe the mortgage balance m and the current mortgage rate r of the refinancer. Each bank is short-lived across two periods. In their first period, a bank gets deposits d from savers at a promised risk-free rate i, lends m' to each refinancer by offering rate r' and gets non-refinanced mortgages at cost from a bank in its second period. In their second period, a bank gets a payment $m'(1+r')$ from each borrower, transfers the non-refinanced mortgages at cost to banks in their first period and returns deposits $d(1+i)$ and profits $m'(r'-i)$ from each borrower to savers.

Since the banks are short-lived, their profit maximization at origination of a mortgage considers only the profit at the time of origination. This reflects the institutional behavior in the agency mortgage market in the US, where the lending banks originate to sell immediately to the agencies Fannie Mae and Freddie Mac and thus most of their profit is received at origination of the mortgage. We do not model the agencies explicitly but having risk-neutral competitive agencies would result in the short-term risk-free rate being the cost of funding for the banks, as we have in our model.

Firms

Firms are standard New-Keynesian to introduce rigidities in the model in order to have real aggregate impact of nominal changes. There is a competitive final good producer who purchases inputs from a unit continuum of intermediate goods producers who set the price of their intermediate good but a fraction Ψ of them are unable to update their price. The intermediate good producer uses labor in a linear production function to produce their goods.
Monetary Authority

The monetary authority sets the nominal risk-free interest rate in the economy according to a Taylor-type interest rate rule as in Iacoviello (2005).

1.2.2 Decision Problems

The decision problems of the agents described above are stated below.

Borrowers

Individual-specific states of a borrower are its Type \(j, j \in \{1, 2\} \), current mortgage balance \(m \), current interest rate \(r \) and the realization of the cost of refinancing \(\hat{\eta} \). Let \(\mu(j, m, r) \) be the mass of Type \(j \) borrowers, \(j \in \{1, 2\} \) whose current mortgage balance is \(m \) and current interest rate is \(r \). Note that we did not include \(\hat{\eta} \) to define the mass since \(\mu(j, m, r) \) is sufficient to know that out of these, \(\lambda \mu(j, m, r) \) have no cost of refinancing. Hence, let \(\mu := \{\mu(j, m, r)\}_{j, m, r} \) be the distribution of borrowers over the entire state space. This distribution denotes the aggregate state of the economy and inflation and wage rate are its functions.

We define \(S := \{\hat{\eta}, j, m, r; \mu\} \) as the current state of a borrower before she decides whether to refinance. A bank cannot observe \(\hat{\eta} \) and \(j \). The shock to the cost of refinancing ensures that there are refinancers of each type for every \(m, r \) in which they are present. As known from Burdett and Judd (1983), due to heterogeneity in search, there is no pure strategy solution for a bank. So, let \(F(r', K) \) be the proportion of identical banks who post no greater than \(r' \) when they meet a refinancer with mortgage balance \(m \) and rate \(r \), where \(K := \{m, r; \mu\} \) and \(r' \) cannot exceed \(r \).

Thus, the decision problem of a borrower is:
\[V(S) = \max \{ V_N(r, S), \ E_{r'|S} V_R(r', S) \} \]

A borrower chooses whether to refinance (R) or not to refinance (N) based on which choice maximizes their expected lifetime value. Note that they decide to refinance first and then meet one or two banks based on their type. Type 1 meets one lender from the distribution of lenders \(F(r', K) \) whereas Type 2 meets two of them non-sequentially and chooses the minimum of the two rates that they offer, the effective distribution of lenders that they meet depends on their type as below:

\[
r' | S \sim \begin{cases}
 dF(r', K) & j = 1 \\
 2(1 - F(r', K))dF(r', K) & j = 2
\end{cases}
\]

Conditional on their action \(a \in \{ R, N \} \), households choose consumption \(c \) and labor effort \(l \) maximize their lifetime utility. Their decision problem now is:

\[
V_a(r', S) = \max_{c,l} \ u_{a,b}^b(c, l) + \beta^\text{eff} \ V(S')
\]

where \(u_{a,b}^b(c, l) \) is the period utility mentioned above and they face the budget constraint:

\[
c + \pi(\mu)^{-1}(m(r + \nu) + m(1 - \nu)) + \delta ph = m' + w(\mu)l
\]
where \(\pi(\mu) \) is the gross inflation and \(w(\mu) \) is the wage rate in the economy, \(mr \) is the nominal interest payment and \(m\nu \) is the nominal principal payment on the mortgage, \(m(1 - \nu) \) is the remaining nominal principal on the mortgage, \(\delta ph \) is the maintenance on the house and the new balance on the mortgage depends on the decision to refinance or not as below:

\[
m' = \begin{cases}
\theta LTV ph & a = \mathcal{R} \\
\pi(\mu)^{-1} m(1 - \nu) & a = \mathcal{N}
\end{cases}
\]

where \(\theta LTV \) is a parameter that defines the maximum ratio of the mortgage amount to the value of the home that a borrower can borrow. Thus, borrowers always refinance up to their LTV limit. This assumption simplifies the household problem and the computations in the model. It has been used commonly in the literature and has been shown to have little effect on the conclusions of the model since even without this restriction, most borrowers borrow up to their borrowing limit (e.g., Beraja et al. (2018), Greenwald (2018)). If they do not refinance, they continue with the remaining principal amount on their mortgage. Finally, the maximum labor effort is normalized to 1, the function \(H \) defines the law of motion of the aggregate state and the type of the borrower is persistent:

\[
l \leq 1, \ \mu' = H(\mu), \ j' = j
\]
Banks

For each mortgage balance \(m \) and current rate \(r \), a bank posts rates for the refinancers with that \((m,r)\) to maximize their profit. They do not observe the type of the borrower and hence only infer the probability of the borrower being either Type 1 or Type 2 based on the mass of borrowers in that state, and their optimal decisions in that state with and without the refinancing cost shock. In addition to that, they receive the regular mortgage payments from the non-refinancing borrowers in that submarket. Thus, a bank’s profit maximization problem is:

\[
P(\mu) = \int \int \frac{1}{B} \{ \pi(\mu)^{-1} m(1-\nu)(r - i) \} \sum_{j=1}^{2} q_R(j, K) + \max_{r'}(\theta^{LT} ph(r' - i)(q_R(1, K) + 2(1 - F(r', K))q_R(2, K))) \} dmdr
\]

where the mass of refinancers \(q_R(j, K) \) is the fraction of mass of that borrower type who find refinancing more valuable than not refinancing. The remaining mass of that borrower type are non-refinancers \(q_N(j, K) \). Since the highest \(r' \) is \(r \) and \(m' \geq m \), those with \(\hat{\eta} = 0 \) always find it optimal to refinance. Imposing that gives:

\[
q_R(j, K) = \begin{cases}
\mu(j, m, r) & \text{if } E_{\nu'|\eta,j,K} V_R(r', \eta, j, K) > V_N(r, \eta, j, K) \\
\lambda \mu(j, m, r) & \text{otherwise}
\end{cases}
\]

\[
q_N(j, K) = \mu(j, m, r) - q_R(j, K)
\]

The bank contracts with the refinancing Type 1 borrower that meets this bank irrespective of the rate it offers but it contracts with the Type 2 borrower only if
the rate this bank offers is lower of the two rates that the Type 2 borrower gets non-sequentially. Hence the expression in the maximization problem of the bank is similar to that in Burdett and Judd (1983). Hence, the distribution posted by a bank in equilibrium is also similar to that in that model. Note that the profit per borrower for the bank is the sum of the principal payment, interest payment, remaining mortgage balance payment less the gross interest payment on the savers’ deposits that financed the mortgage, i.e.,

\[m'(r' - i) = m'(\nu + r' + (1 - \nu) - (1 + i)) \]

Savers

Saver’s problem is a standard problem of lifetime expected utility maximization where it earns bank profits, firm profits, risk-free return on the bonds and bank deposits and labor income and pays for the maintenance on the house, consumption, buys bonds and lends deposits to banks. Note that since savers do not have a mortgage, the cost of refinancing shock is irrelevant to them. Thus, the saver problem is:

\[
\max_{\{c_t, l_t, b_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{eff} u_{N,\theta}^{s}(c_t, l_t)
\]

with the budget constraint

\[
c_t + d_t + b_t + \delta ph = \pi_{t-1}^{-1}((d_{t-1} + b_{t-1})(1 + i_{t-1}) + \Pi_{t-1}^l) + w_t l_t + \chi_s^{-1}\Pi_t^f
\]
with initial conditions on the bonds and deposits:

\[b_{-1} = d_{-1} = 0 \]

and the labor effort limit normalization:

\[l_t \leq 1 \]

In the budget constraint, \(\Pi^f_t \) are the profits from intermediate goods producers in the economy, and bank profits \(\Pi^f(\mu) \) are the profits earned by all banks:

\[\Pi^f(\mu) = \chi_s^{-1} BP(\mu) \]

and deposits demanded \(d(\mu) \) are the mortgage balances of refinancers and non-refinancers of both types of borrowers:

\[d(\mu) = \chi_s^{-1} \int \int \{ \theta^{LTV}_{j=1} \sum q_R(j, K) + \pi(\mu)^{-1} m(1 - \nu) \sum q_N(j, K) \} dmdr \]

Firms

The final good producer solves a static problem of choosing each intermediate good input \(y_h(k) \) to purchase at the price \(P_t(k) \) and producing the final good sold at price \(P_t \) as below:
$$\max_{y_t(k)} P_t \left(\int_0^1 y_t(k)^{-1} dk \right)^{-1} - \int_0^1 P_t(k) y_t(k) dk$$

The intermediate good k producer chooses price $P_t(k)$ and produces the demanded $y_t(k)$ as below:

$$y_t(k) = a_t l_t(k)$$

where $l_t(k)$ is labor hours and a_t is the total factor productivity. In this model, I assume $a_t = a$, a constant. These intermediate good producers are subject to price-stickiness, in particular, a fraction Ψ of them are unable to update their price in any period.

Monetary Authority

The monetary authority sets the nominal interest rate which is also the cost of lending as below:

$$1 + i_t = (1 + i_{t-1})^{\rho_i} \left(\frac{\pi_{t-1}}{y_{ss}} \right)^{\rho_{ir}} \frac{rr_{ss}}{y_{ss}} (1 - \rho_{i} u_{i,t})$$

where i_t is the interest rate, π_{t-1} is the inflation, y_{t-1} is the output of the economy, rr_{ss} and y_{ss} are the steady-state real rate and output respectively. The white noise shock process $u_{i,t}$ has variance σ_u^2.

26
1.2.3 Equilibrium

A competitive equilibrium in the above model is defined as a sequence of prices \(\{w, i, P, \{P(k)\}_{k}, \pi, r\}_t \), borrower decisions \(\{c, l, a, m'\}_{\eta, j, t} \), saver decisions \(\{c_s, l_s, d, b\}_t \), bank decisions \(\{F\}_t \), firms’ demands \(\{y(k)\}_{k,t} \), \(\{l(k)\}_{k,t} \), distribution of borrowers \(\{\mu\}_t \) and its law of motion \(H \) such that borrowers of both types, savers, banks and firms optimize their problems, interest rate rule holds, \(H \) is consistent with borrower and bank decisions and all the markets below clear:

- Labor market: \(\int l_t(k)dk = \chi_s l_{s,t} + \sum_{j=1}^{2} \int \{ \lambda l_{0,j,t}(\mu_t) + (1 - \lambda) l_{0,j,t}(\mu_t) \} d\mu_t \)
- Bond market: \(b_t = 0 \)
- Goods market: \(\sum_{j=1}^{2} \int \{ \lambda c_{0,j,t}(\mu_t) + (1 - \lambda) c_{0,j,t}(\mu_t) \} d\mu_t + \chi_s c_{s,t} + \delta ph = w_t \int l_t(k)dk + \Pi_t^f \)

Optimal Decision of a Bank

The ability to observe the refinancer’s \((m, r) \), their optimal decisions and the distribution \(\mu \) allows statistical discrimination by the bank. A bank posts a rate according to its market power in the market, which is higher if a greater fraction of refinancers meet only one bank. As mentioned earlier, bank plays a mixed strategy as in Burdett and Judd (1983). At a higher rate, the profit is higher if the refinancer contracts with the bank and a lower rate, the probability of the refinancer contracting with the bank is higher. The different \(r' \) posted form a connected set and the proportion of lenders that post at most \(r' \), \(F(r', \mathbb{K}) \), is continuous.

Equating the profit at any rate \(r' \) posted by a bank to the profit by posting \(r' = r \) in Equation 1.1 gives the distribution of lenders \(F(r', \mathbb{K}) \) according to the rates \(r' \) they post once they observe \(\mathbb{K} \) := \(\{m, r; \mu\} \):
\[F(r', K) = 1 - \frac{q_R(1, K)}{2q_R(2, K)} \frac{r - r'}{r' - i} \]

Solving for \(r' \) by setting \(F(r', K) = 0 \) above gives the lower bound of this distribution:

\[r' = i + \frac{(r - i) \frac{q_R(1, K)}{q_R(1, K) + 2q_R(2, K)}}{q_R(1, K)} \]

As a numerical example, we plot this distribution in two cases with the same mortgage balance \(m \) and current mortgage rate \(r \) with the risk-free rate \(i \), but with different ratios of the two types of borrowers in the Figure 1.1. In either of these cases, Type 2 borrowers, who get quotes from two banks and choose the minimum, effectively get lower rates than Type 1 borrowers. In the market with a higher fraction of Type 1 borrowers, the offered rates by banks are higher for both types of borrowers and are closer to the monopoly rate \(r \). Thus, if there are more borrowers who get a quote from only one bank, even the borrowers who get two quotes end up with higher rates. Thus, the composition of types of borrowers with the same \((m, r)\) plays an important role in the optimal decision of a borrower to refinance her mortgage.

Also, for any ratio of the two types of borrowers, the distribution of lenders is Pareto. Thus, many lenders post low rates but few post high rates. Hence, Type 1 borrowers are likely to get low rates but Type 2 borrowers are very unlikely to draw two high rates. This leads to isolation of Type 1 borrowers at high rates but not of Type 2 borrowers at low rates. That is why, as we will see later, statistical discrimination costs Type 1 borrowers a lot but does not benefit Type 2 borrowers.
Figure 1.1: Effective distribution of lenders in benchmark model

Note: This is a numerical example. Banks post lower rates on average when there are more Type 2 borrowers with the observed \((m, r)\). Type 2 borrowers effectively get lower rates than Type 1 on average as they choose minimum of the two offers. Because of the Pareto distribution, Type 1 borrowers are likely to get low rates but Type 2 borrowers are unlikely to get high rates, leading to isolation of Type 1 borrowers at high rates.

1.2.4 Parameter Selection and Calibration

Most of the parameters are chosen from the literature. We calibrate four parameters of the model together to match four moments in the data by minimizing the maximum difference between the moments in the data and the corresponding moments generated by the model in its steady state. The results are summarized in Table 1.3.

In particular, the search cost parameter \(\eta\), the fraction of Type 2 borrowers \(\alpha\), the borrower and saver labor disutility \(\psi_b\) and \(\psi_s\) respectively are calibrated together to match the average years after which a mortgage is refinanced in the Fannie Mae and Freddie Mac Loans data, the fraction of refinancers who consider more than one lender in the NSMO data, the aggregate labor supply of borrowers and the aggregate labor supply of savers. In addition to that, the refinancing cost shock is set equal to the fraction of homeowners who move per quarter in the US Census data.

I calibrate several of the standard parameters similar to the calibration in Greenwald (2018). The fraction of savers \(\chi_s\) and the borrower discount factor \(\beta_b\) are matched.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Target/Source</th>
<th>Data Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search Cost</td>
<td>η</td>
<td>1.116</td>
<td>Avg years to refinance (GSE)</td>
<td>3.58</td>
</tr>
<tr>
<td>Type 2 Borrowers</td>
<td>α</td>
<td>.54</td>
<td>Type 2/Refinancers (NSMO)</td>
<td>.478</td>
</tr>
<tr>
<td>Refinance Cost Shock</td>
<td>λ</td>
<td>1.25%</td>
<td>Owners who move/Q (Census)</td>
<td>1.25</td>
</tr>
<tr>
<td>Borrow. labor disutility</td>
<td>ψ_b</td>
<td>11.02</td>
<td>Total borrower labor supply</td>
<td>.33</td>
</tr>
<tr>
<td>Saver labor disutility</td>
<td>ψ_s</td>
<td>7.02</td>
<td>Saver labor supply</td>
<td>.33</td>
</tr>
<tr>
<td>Inv Frisch elasticity</td>
<td>ϕ</td>
<td>1</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Survival Probability</td>
<td>ζ</td>
<td>99.5%</td>
<td>50 yrs owner life (Census)</td>
<td></td>
</tr>
<tr>
<td>Fraction of savers</td>
<td>χ_s</td>
<td>.681</td>
<td>SCF 1998</td>
<td></td>
</tr>
<tr>
<td>Borrower discount factor</td>
<td>β_b</td>
<td>.965</td>
<td>SCF 1998</td>
<td></td>
</tr>
<tr>
<td>Saver discount factor</td>
<td>β_s</td>
<td>.987</td>
<td>Avg. 10Y rate, 1993-1997</td>
<td></td>
</tr>
<tr>
<td>Mortgage amortization</td>
<td>ν</td>
<td>.435%</td>
<td>Greenwald (2018)</td>
<td></td>
</tr>
<tr>
<td>Max LTV ratio</td>
<td>θ_{LTV}</td>
<td>.85</td>
<td>Greenwald (2018)</td>
<td></td>
</tr>
<tr>
<td>Housing preference</td>
<td>ξ</td>
<td>.25</td>
<td>Davis and Ortalo-Magné (2011)</td>
<td></td>
</tr>
<tr>
<td>Housing stock</td>
<td>h</td>
<td>8.828</td>
<td>$p = 1$, SCF 1998</td>
<td></td>
</tr>
<tr>
<td>Housing depreciation</td>
<td>δ</td>
<td>.5%</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Productivity</td>
<td>a</td>
<td>3.006</td>
<td>$y_{ss} = 1$</td>
<td></td>
</tr>
<tr>
<td>Variety elasticity</td>
<td>ϵ</td>
<td>6</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Ψ</td>
<td>.75</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Steady state inflation</td>
<td>π_{ss}</td>
<td>1.008</td>
<td>Greenwald (2018)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3: Benchmark calibration

Using the Survey of Consumer Finances (SCF) 1998. The maximum LTV limit θ_{LTV} is set to 0.85 since there are a lot of mortgages with 80% LTV but also some with higher limits like 90% or 95%. The principal payment ratio ν is set to 0.435% as in Greenwald (2018). Saver discount factor β_s is set to match the 1993-1997 average 10-year rates (6.46%) and steady-state inflation π_{ss} matches the 10-year inflation expectations during the same period. Survival probability ζ matches the average life of a homeowner according to the US Census which is 50 years. Inverse Frisch elasticity ϕ, variety elasticity in the production function ϵ and price stickiness Ψ are as per the standard values in the literature. The productivity parameter a is chosen so that the steady state output is 1. Housing preference parameter ξ is chosen as in Greenwald (2018) to match housing expenditure estimated by Davis and Ortalo-Magné (2011). Housing stock h is chosen so that the ratio of saver house value to their income is the same as in SCF 1998 and the house price is 1 in the steady state. Housing depreciation δ value is standard in the literature.
1.3 Steady State Analysis

Now we describe the optimal refinancing decisions during the lifetime of the borrowers in the steady state of the model and then show how the invariant distribution in this steady state matches that in the data.

1.3.1 Refinancing Policy Functions

As seen in the model, borrowers have to pay a fixed cost of refinancing in order to reduce their mortgage payments and extract home equity. The potential reduction in mortgage payment is higher if the potential rate reduction is higher but lower if more home equity is extracted. The refinancing decision thus not only depends on the current mortgage balance and the current mortgage rate but also on the composition of the two types of borrowers in that state as it determines the potential rate reduction offered by banks who statistically discriminate between the two types.

Hence, to understand these decisions, it is crucial to understand the relative distribution of the two types of borrowers in steady state in the mortgage balance - mortgage rate space. This is shown in Figure 1.2. There are more Type 1 borrowers for each Type 2 borrowers at a higher mortgage rate and at a higher mortgage balance. The LTV limit mortgage balance \(m_{LTV} \) and the highest mortgage rate \(r_{max} \) is the state in which each borrower is born. Close to this state, there are much more Type 1 borrowers relative to Type 2 borrowers compared to that in the rest of the space. This is because at birth, Type 1 refiners get higher rate than Type 2 because of their own search behavior. Once they get a higher rate, on their next attempt to refinance, banks can infer that any refiner with such high rate is more likely to be Type 1 refiner and thus offer them a high rate again, whereas the opposite happens to Type 2 refiners at lower rates. This increases the isolation of Type
Figure 1.2: Ratio of mass of borrowers in steady state of benchmark model

Note: The ratio is $\frac{\mu(1,m,r)}{\mu(2,m,r)}$. Type 1 are isolated at high rate, high mortgage balance, thus easy to statistically discriminated.

1 borrowers at high rates. Type 2 borrowers do not get as much isolated at lower rates because of the Pareto distribution of lenders implies that Type 1 refinancers are also likely to end up with low rates. Thus, the relative distribution of borrowers affects the distribution of banks based on their offer rates for each (m,r) state and thus affects the optimal decision of the borrowers in that state.

The refinance policy of each type of borrower in each state is shown in Figure 1.3. Note that in each state that Type 1 refinances, Type 2 also refinances; but not vice-versa as the fixed cost of refinancing is the same for both types whereas the benefit of meeting two banks always exceeds the benefit of meeting one bank. The three regions where borrowers do not refinance are explained in the figure. Firstly, the relatively high concentration of Type 1 borrowers close to m_{LTV} and r_{max} leads to greater market power for the banks, easier inference of type leads to stronger statistical discrimination and thus the offered rate reduction is low; hence the borrowers do not refinance in
these states. Secondly, once the current rate becomes low enough, borrowers do not find it optimal to spend the fixed cost of refinancing in order to reduce their mortgage payment further. Thirdly, even at higher mortgage rates, once the mortgage balance becomes low enough, the mortgage payment is thus low enough that refinancing to get a lower rate is not worth the fixed cost.

The different arrows in Figure 1.3 describe the refinancing policy during the life of a typical borrower. First, at birth (at m_{LTV} and r_{max}), both types refinance and get lower rates and stay at the same mortgage balance level m_{LTV}. Second, if the new mortgage rate is low enough, the borrower does not find it optimal to spend the refinancing cost to get a lower rate or to extract the home equity; thus she only repays her mortgage for the rest of her life. Third, if the new mortgage rate is not that low, the borrower refinances her mortgage after some periods. The number of periods for which she waits before refinancing depends on the potential rate improvement and the extractable home equity post refinancing. It should be noted that the borrower waits longer to refinance even though she has a higher current mortgage rate. This is because the relative mass of Type 1 borrowers to Type 2 borrowers is much higher at these high mortgage rates as seen in Figure 1.2 which makes it very easy for the banks to statistically discriminate in these states, thus reducing the potential rate improvement for borrowers. Eventually, when the benefit of extracting the accumulated home equity becomes high enough, the borrowers refinance at these high rates, get lower rates and cash out the home equity. Whether the borrowers refinance again in their lifetime depends on the new rate they end up with. Thus, the distribution of the two types of borrowers in the mortgage balance - mortgage rate space is crucial to determine the optimal refinance policy of the borrowers. As described in Section 1.1.1, this optimal refinance policy is also observed in the data and thus the above novel mechanism is validated.
The relevance and importance of heterogeneity in mortgage search can be seen by removing the mortgage search heterogeneity and have only Type 1 borrowers or only Type 2 borrowers in the economy with all the other parameters kept the same. In the economy with only Type 1 borrowers who meet one lender at refinancing, any lender offers only the monopoly price (current mortgage rate) to each borrower in each state if they try to refinance and hence, since there is no rate improvement, the Type 1 borrower does not find it optimal to spend the refinancing cost and so does not refinance in any state. Her mortgage rate remains at the highest level with which she was born. On the other hand, in the economy with only Type 2 borrowers who meet two lenders at refinancing, any lender offers only the competitive price (cost of lending rate) to any borrower trying to refinance. Hence, given the calibrated cost of refinancing, the Type 2 borrower finds it optimal to refinance in each state where the rate is above the competitive rate. Her mortgage rate becomes the lowest level available as soon she refinances immediately after birth. Contrasting these vanilla optimal refinance policies with that observed in Figure 1.3, the optimal refinance
policy of the borrowers in their lifetime crucially depends on the mortgage search heterogeneity studied in this paper. Similarly, heterogeneity in mortgage search also generates the heterogeneity in mortgage rates observed in the data.

1.3.2 Matching the Data

In Figure A.4 below, we find that the model is a good representative of the data by comparing the steady state distribution of the two types of borrowers with respect to their mortgage balance and mortgage rate to that seen in the data. For this comparison, we choose data from the month of November 2015 as the current coupon rate of a 30 year fixed rate agency mortgage-backed securities (secondary market rate), which is the cost of financing for mortgage lenders, was relatively steady for more than 2 years before this month (See Figure A.2). We also consider other months for this comparison and find similar results. To have enough data to build a distribution, we choose to work with the HMDA data. We divide the MSAs into above-median and below-median search activity as in Section 1.1.3. First, we look at the distribution of the fraction of the initial mortgage amount that is unpaid in this month (top-left panel of Figure A.4). We find that entities that search less tend to have a higher mortgage balance. That matches closely with the unpaid mortgage balance distribution in the steady state of the model (top-right panel of Figure A.4). Second, we look at the distribution of the difference between the mortgage rate and the secondary market rate at the time of origination of the unpaid mortgages in this month. We find that the entities that search less tend to pay a higher mortgage rate premium. This property matches that in the model. The distribution of rates in the model is Pareto whereas the distribution in the data is highly left-skewed. One of the main results because of the Pareto distribution is that Type 1 borrowers are isolated and thus much worse off but Type 2 borrowers are not isolated and thus not
much better off due to statistical discrimination. This result is valid in the data since
the distribution is left-skewed. The relative difference in the rate secured by the two
types of borrowers in the model matches closely with that in the data. This is shown
in Table A.4 which states that the difference between those who search less and those
who search more in their mean of the distribution of rate or mortgage balance relative
to the overall mean is comparable in the data and the model. Thus, the model is a
good representative of the data and thus the steady state results and the results from
the counterfactual experiments are reliable.

1.4 Effects of Statistical Discrimination in Steady
State

Now we will describe the effects of statistical discrimination in the steady state of the
model on borrowers at different stages of their life, on the steady state distribution of
borrowers, on their absolute and relative welfare. For this, we compare them in the
benchmark economy which has observable mortgage to a counterfactual economy in
which the current rate and balance is unobservable to the lender, they offer rates based
on the aggregate ratio of the two types of borrowers and thus there is no statistical
discrimination.

1.4.1 Evolution of State with Borrower’s Age

In the Figure 1.4 below, we show the evolution of the distribution of mortgage rate
and mortgage balance of the two types of borrowers in the steady state of the model.
Each borrower is born with a high rate and mortgage balance equal to the LTV
limit. All of them refinance in the first period. The initial separation in the rate
distribution between them thus created is because of their own search and the market power of the lender based on the aggregate ratio of the two types. Hence, it is the same in the benchmark and the counterfactual economy. But with this increased separation in types, the lenders have more information about the borrowers based on their current rate. Type 1 borrowers are likely to be at higher rates and Type 2 at lower rates. In the benchmark economy, thus, higher the rate of a refinancer, more likely she is to be of Type 1, less likely she is to meet another lender, more the market power of the lender, thus higher the offer rate. This results in increase in the separation in mean rates between the two types once they start refinancing again. After about five years of age, only those of Type 2 borrowers whose cost of refinancing becomes zero enter the market whereas a few more Type 1 borrowers enter the market to get lower rates. Hence, note that I plot values for first ten years when most of the refinancing action takes place and also that I have dropped the first period percentage refinancers in the plot since it is 100. In contrast to this, in the counterfactual economy without statistical discrimination, the initial separation decreases as the lenders are no longer able to condition their offer rates based on the current rate and balance of the refinancer. So, many more Type 1 borrowers who got higher rates at the start find it optimal to refinance again and reach lower rates whereas Type 2 borrowers, who no longer gain by being at lower rates, wait longer to collect more home equity and then refinance. Thus, the difference in rates reduces sharply as they refinance again. After about five years of age, both types refinance only if their cost of refinancing becomes zero. Thus, much of the difference in rates in the benchmark economy is explained by statistical discrimination. The initial variation in rates for Type 1 borrowers is higher as Type 2 borrowers draw twice from the same distribution and thus get a tighter distribution of rates. This variation increases as they refinance more since those at high rates get less reduction and those at low rates get more reduction because of statistical discrimination. This effect goes
away when the mortgage becomes unobservable. In terms of mortgage balance, in
the benchmark economy, Type 1 borrowers keep on refinancing at later ages also
and hence stay at a higher mortgage balance than Type 2 borrowers. This also goes
away if there is no statistical discrimination. Hence, statistical discrimination has a
big impact on lender’s offer rates and thus on refinancing decisions and the resulting
distribution of rates and home equity.

1.4.2 Isolation of Type 1 borrowers

We have shown in Section 1.3.1 how Type 1 borrowers become isolated at higher
mortgage rate and balance in steady state. Now let us see how much of this isolation
depends on statistical discrimination. The plots on the left-hand side of Figure 1.5
are of the relative distribution of the two types in the steady state of the benchmark
economy. It can be seen how because of this relative distribution, at high mortgage
rate and balance, it is much easier to statistically discriminate and infer the type
of the borrower. At the same time, at low rates, there is not much isolation of
Type 2 borrowers because of the Pareto distribution of lenders mentioned earlier and
also because of the presence of old Type 1 borrowers who are present at these lower
rates. On the other hand, on the right-hand side are the same plots for the economy
without statistical discrimination. Due to repeated refinancing, the two types collect
very similar home equity and they end up at higher rates mainly because of their own
lack of search. There is hardly any isolation of Type 1 borrowers in any region of
the state space. Thus, the isolation of Type 1 borrowers is mainly due to statistical
discrimination.
Figure 1.4: Age-wise state & refinancing, with & without statistical discrimination

Note: The plots correspond to the steady state of the two economies. Due to statistical discrimination, difference in rates between two types amplifies with age (top left); those who get a high (low) rate keep getting high (low) rate, hence higher variation (top right); Type 1 refinance more frequently, thus collect less home equity (mid left); few Type 1’s get low rates soon, others keep refinancing to get low rates, thus higher variation (mid right); Type 1 keep refinancing to reach low rate (bottom).
Figure 1.5: Relative mass of borrowers, with & without statistical discrimination
Note: The plots correspond to the steady state of the two economies. The ratio used is (Type 1/Type 2). This shows isolation of Type 1 borrowers at high mortgage rates and balances in benchmark model is due to statistical discrimination.
1.4.3 Welfare Costs

Statistical discrimination has big welfare costs. Borrowers are willing to pay 30% of their quarterly income (about $3,300) to make mortgage unobservable and thus remove statistical discrimination. Out of this, Type 1 are willing to pay 52% and Type 2 are willing to pay 8% of their quarterly income. Left panel of Figure 1.6 shows the welfare cost of statistical discrimination to borrowers at each age. Its right panel shows the average welfare cost of statistical discrimination for a borrower in economies with different fraction of Type 2 borrowers (α^* is the calibrated value), keeping all other parameters same. The cost is defined as the difference in values for a borrower in the economies with and without statistical discrimination expressed in consumption good equivalents. At birth, statistical discrimination costs little but as soon as they start refinancing, it costs much more to Type 1 borrowers than Type 2. Once they stop refinancing, they make smaller mortgage payments over time and so the cost of statistical discrimination diminishes. For Type 2 borrower, the cost is positive because they do not gain much out of statistical discrimination due to the Pareto distribution and the existence of old Type 1 borrowers at low rates in steady state, as mentioned before. Even after several rounds of refinancing, about half of Type 2 borrowers have a positive cost and the other half have a smaller negative cost. Those Type 2 borrowers with low rates who decide to refinance, extract home equity, make larger mortgage payments and are worse off due to statistical discrimination (positive welfare cost) whereas those Type 2 borrowers with high rates who decide not to refinance as they will be perceived as being Type 1, collect home equity, make smaller mortgage payments over the rest of their life and thus benefit out of statistical discrimination (negative welfare cost). If there are more Type 2 borrowers in the economy, i.e., move to the right of α^* in the right panel of Figure 1.6, lender loses their average market power, fewer Type 1 are isolated at high rate and balance
Figure 1.6: Welfare cost of statistical discrimination

Note: Welfare cost is small at birth, increases with each round of refinancing, quadruples in eight years. Type 2’s do not benefit out of it since they are not isolated at low rates due to the Pareto distribution of lenders seen earlier in Figure 1.1. It is the lenders who benefit by statistical discrimination. (left). It is much higher for the isolated Type 1 borrowers in the calibrated model, reduces if there are more Type 2 borrowers in economy (right).

and thus the welfare cost of statistical discrimination decreases. Thus, this way of increasing mortgage search in the economy leads to significant reduction in welfare cost of statistical discrimination.

Statistical discrimination explains more than two-thirds of the difference in welfare between the two types. Type 1 borrowers are willing to pay 70% of their quarterly income (about $7,700) to switch to Type 2 in the benchmark economy which reduces to 21% in the counterfactual economy with unobservable mortgage. Left panel of Figure 1.7 shows the age-wise difference in welfare between the two types with and without statistical discrimination and the right panel shows the difference in welfare between the two types with and without statistical discrimination in economies with different fraction of Type 2 borrowers (α^* is the calibrated value), keeping all other parameters same. The difference in value is expressed in consumption good equivalents. Similar to earlier, the difference in welfare between types is small at birth but as they start refinancing and thus getting separated, this difference increases and once they are done with refinancing, the difference in welfare diminishes as they make smaller mortgage payments. Without statistical discrimination, instead of the differ-
Figure 1.7: Welfare difference between the two types of borrowers

Note: At birth, the welfare difference is small and not driven by statistical discrimination, but increases sharply with each round of refinancing due to increasing isolation of Type 1’s (left). Two-thirds of the welfare difference is due to statistical discrimination in the calibrated model, it would decrease if there are more Type 2’s in economy (right).

ence increasing, Type 1 borrowers at higher rates refinance sooner than Type 2 and close the gap in welfare and this gap keeps reducing with time. As earlier, if there are more Type 2 borrowers in the economy, i.e., move to the right of α^* in the right panel of Figure 1.7, the difference in welfare between the two types decreases and statistical discrimination accounts for less of it. Thus, this way of increasing mortgage search also reduces the difference in welfare between the two types.

1.5 Effect of increasing mortgage search

An explicit aim of the Consumer Financial Protection Bureau (CFPB) is to increase the mortgage search in the economy. But how this mortgage search increases can be important for welfare consequences for the borrower, especially in the presence of statistical discrimination. We will consider two ways of increasing mortgage search: first in which one-third of Type 1 borrowers now become Type 2 and second in which Type 2 borrowers meet 3 lenders instead of two. We find that welfare cost becomes two-third of the benchmark level in the first case whereas it becomes four times the
benchmark level in the second case. Thus, while implementing policies related to increasing mortgage search, it is important to evaluate whether non-shoppers search more or shoppers search more.

1.5.1 Non-shopper searches more

In this economy, we increase the fraction of Type 2 borrowers α from 0.54 to 0.68 based on our findings about search intensity in the HMDA data1,3. As seen in Section 1.4.3, this results in welfare gains for both types of borrowers and the difference in welfare between the two types also decreases. Welfare cost becomes two-third of the benchmark level and difference in welfare falls by 15%. Below we compare the steady state refinancing decisions and distribution in this economy with that in the benchmark.

Steady States Comparison

In this alternate economy with more borrowers who meet two banks, banks offer lower rates for both types of borrowers as there are fewer borrowers who meet one lender relative to those who meet two lenders. Fewer Type 1 borrowers are isolated in the high rate and mortgage balance region. Hence, refinancing is now optimal not only in each state in which refinancing is optimal in the baseline model but also in even more states for both types of borrowers. This is shown in Figure A.5. Hence in the steady state distribution of this alternate economy, for both types of borrowers, the mean rate is lower; since the offered rate is lower on refinancing, the frequency of

1,3The measure of search intensity in a MSA-year, applications withdrawn/applications accepted has mean 0.24 and standard deviation 0.07. Assuming that each borrower withdraws their application only once, about one-third (0.24/0.76) of borrowers are shoppers in an MSA-year with average search intensity. In an MSA-year with one standard deviation higher search intensity, this number increases to about half (0.32/0.68). Hence, the increase in α by about .14 represents a one-standard deviation increase in the fraction of Type 2 borrowers in the economy.
refinancing over the life of a borrower is lower; since refinancing frequency is lower, the average home equity is also larger than in the baseline model. This is shown in Table A.5.

1.5.2 Shopper searches more

Another way of increasing mortgage search is to make Type 2 borrowers meet three lenders instead of two when they refinance. This changes the distribution of lenders based on their offer rates as Type 2 borrowers now choose minimum of three rates. Like earlier, many lenders post low rates but now many also post high rates. This increases the isolation of Type 1 borrowers as Type 2 borrowers are still unlikely to end up with those high rates. Due to the increased isolation, Type 1 borrowers get higher rates, refinance more frequently in the hope of getting a low rate, collect less home equity, keep making higher mortgage payments and thus have welfare cost of statistical discrimination five times as much as in the benchmark economy. Type 2 borrowers now benefit out of the increased statistical discrimination and thus have a slightly negative welfare cost of statistical discrimination. The average borrower’s welfare cost becomes four times that in benchmark case and the difference in welfare between types becomes three times that in benchmark case. Thus, the two ways of increasing mortgage search have opposite welfare effects.

Increased isolation of Type 1 borrower

Now, with the same mass of the two types of refinancers, the mass that a lender contracts with as shown in Equation 1.1 becomes

\[(q_{R}(1, K) + 3(1 - F(r', K))^2 q_{R}(2, K))\]
Figure 1.8: Effective distribution of lenders when Type 2 meet 3 lenders
Note: This is a numerical example. If Type 2 meet 3 lenders, Type 1 borrowers are much more likely to be isolated at high rates.

Thus, now proportion of lenders who post no greater than r' is:

$$F(r', K) = 1 - \sqrt[3]{\frac{qR(1, K)}{qR(2, K)}} \frac{r - r'}{r' - i}$$

with lower bound:

$$r' = i + (r - i) \frac{qR(1, K)}{qR(1, K) + 3qR(2, K)}$$

Figure 1.8 shows the effective distributions of lenders that the two types of borrowers meet in the benchmark economy and that where Type 2 meet 3 lenders. Now, Type 1 borrowers are much more likely to end up at higher rates and with repeated refinancing in presence of statistical discrimination, this leads to their increased isolation. They are also likely to end up at low rates and hence Type 2 borrowers are not isolated at low rates.

Figure 1.9 (similar description to Figure 1.4) shows how Type 1 borrowers are now stuck at much higher rates. The variance of rates they get is also higher than benchmark as more lenders post extreme rates. Hence, Type 1 borrowers at high rates keep refinancing hoping to get a low rate and thus collect less home equity and make
Figure 1.9: Borrower’s age-wise state in steady state when Type 2 meet 3 lenders
Note: There is more aggregate search when Type 2 meet 3 lenders. Due to increased ability to statistically discriminate in the counterfactual economy, isolation of Type 1 borrowers increases, they get much higher rates, Type 2 get lower rates than benchmark (top left); As more extreme rates are posted, variation in rates that Type 1 get increases, while Type 2 search and get low rates more often than benchmark (top right); As Type 1 are likely to get low rates, they keep on refinancing, thus their home equity stays low (bottom left); As few Type 1 get low rate soon while others keep refinancing to get low rates, the spread in mortgage balance increases (bottom right).

higher mortgage payments. Type 2 borrowers get much lower rates on average with a much tighter spread. This increased isolation of Type 1 borrowers increases the ability to statistically discriminate and drastically increases the welfare cost of Type 1 borrower.

Increase in welfare costs

As shown in the left panel of Figure 1.10 (similar description to right-panel of Figure 1.6), welfare cost of statistical discrimination for Type 1 borrowers becomes five times
Figure 1.10: Welfare cost of statistical discrimination when Type 2 meet 3 lenders

Note: There is more aggregate search when Type 2 meet 3 lenders. Increased isolation of Type 1 borrowers cost them a lot in the counterfactual economy, Type 2 now benefit by statistical discrimination. Thus, lenders benefit much more (left). Now, statistical discrimination accounts for three-fourths of the difference in welfare between the two types, compared to two-thirds in benchmark (right).

(265% of quarterly income) that in benchmark economy whereas it becomes slightly negative (-2%) for Type 2 borrowers as they now benefit by statistical discrimination. For an average borrower, the welfare cost thus becomes four times (125% of quarterly income) that in benchmark. In the right panel of Figure 1.10 (similar description to right-panel of Figure 1.7), the difference in welfare between the two types now becomes three times (213% of quarterly income) that in benchmark and three-fourths of it is explained by statistical discrimination. Thus, this method of increasing search has reduced the welfare of a borrower significantly and also increased the difference in welfare between the two types.

1.6 Monetary Policy Transmission to Consumption

Mortgage refinancing is an important channel of monetary policy transmission to consumption in the US. An interest rate cut influenced by Federal Reserve’s open market operations leads to a reduction in the cost of lending which leads to a reduction
in mortgage rates. This encourages households to refinance their mortgages to a lower rate and also extract their home equity at the same time, thus increasing their current consumption. Statistical discrimination described so far in the paper can have a significant impact on this transmission mechanism since the reduction in rates offered to refinance borrowers depends on the composition of shoppers and non-shoppers at any current mortgage. As seen in the steady state results, statistical discrimination hurts Type 1 borrowers much more than it benefits Type 2 borrowers. Similarly, we find in our experiments below that as statistical discrimination becomes stronger, Type 1 borrower’s consumption response becomes smaller but that of Type 2 remains almost the same. Below, we look at the response to a one-period unexpected 25 basis points expansionary monetary policy shock in four different economies with differing ability to statistically discriminate: benchmark, unobservable mortgage, one-third of Type 1 meet 2 lenders, Type 2 meet 3 lenders.

1.6.1 Benchmark Economy

Type 1 borrowers, isolated at higher rates and thus easier to statistically discriminate, respond much less to the expansionary monetary shock than Type 2 borrowers. We calculate the impulse response functions to a 25 basis points reduction in the risk-free rate in the steady state of the baseline model. As Figure 1.11 shows, the rate offered to Type 2 borrowers reduces more than that to Type 1 borrowers because of the isolation of Type 1 borrowers in steady state and that Type 2’s are more likely to be in states with more Type 2 borrowers. But since they already have a lower mortgage rate in steady state, the increase in the percentage of refinance borrowers among Type 2’s is smaller. At the same time, Type 2’s have a smaller mortgage balance in steady state and thus a bigger home equity. Thus, the fewer additional Type 2 refinancers extract greater home equity than Type 1’s and thus their mortgage balance increases more.
Figure 1.11: Monetary Policy Transmission to Consumption: Benchmark
Note: Those who meet more lenders have a bigger consumption response to an expansionary monetary shock as in steady state, they get lower rates sooner, thus refinance less often, thus collect more home equity. Due to lower rates in steady state, fewer of them refinance to the shock (top right).

This results in Type 2 borrowers (about 0.84%) having a bigger consumption response to the monetary shock than Type 1 borrowers (about 0.57%). At the aggregate, the consumption of borrowers increases by about 0.71% in response to this monetary policy shock which is line with the consumption response found in the literature.

1.6.2 Economy with unobservable mortgage

This economy with no statistical discrimination results in much bigger consumption response of Type 1 borrowers than benchmark as they are no longer isolated at high rates and almost same response of Type 2 borrowers as they are not affected much by statistical discrimination. We shock the steady state of this economy with the same 25 basis points reduction in the risk-free rate. As seen in Figure 1.12, Type 2 get a similar rate reduction whereas Type 1 get much lower offer rates as they are not isolated at high rates. The increase in refiners among Type 2’s is small
Figure 1.12: Monetary Policy Transmission: No Statistical Discrimination
Note: Without statistical discrimination, Type 1 are no longer isolated, have lower rates, more home equity, bigger consumption response; Type 2 who did not benefit much by statistical discrimination have similar response to benchmark.

compared to benchmark. Type 1 refinancers increase compared to benchmark because of the lower offer rates. They have bigger home equity in steady state compared to benchmark, thus their increase in mortgage balance is bigger. Home equity of Type 2 borrower is almost the same as in benchmark, hence the increase is also similar. Thus, the consumption response of Type 2 borrower (0.88%) is similar to that in benchmark but that of Type 1 (1.21%) is much bigger. Thus, without statistical discrimination, the consumption response of shoppers remains almost similar but that of non-shoppers increases a lot as they are no longer isolated at high rates.

1.6.3 Economies with more mortgage search

Now we look at two economies described earlier with different ways of increasing mortgage search, an explicit aim of the CFPB. We find that consumption response of Type 1 borrowers moves in opposite directions compared to the benchmark whereas
that of Type 2 remains almost same.

One-third of Type 1 meet 2 lenders

This economy with more search and weaker ability to statistically discriminate results in bigger consumption response than benchmark for both types of borrowers. We shock the steady state of this economy with the same 25 basis points reduction in the risk-free rate. As seen in Figure A.6, the average offer rate reduces more as both types of borrowers get lower rates since there are fewer Type 1 borrowers isolated at high rates and the reduced market power due to the presence of more Type 2 borrowers. But since both types of borrowers are at lower rates in steady state, the percentage increase in the refinancers of both types is smaller compared to that in the baseline economy. At the same time, both types of borrowers have more home equity in steady state and thus the fewer additional refinancers extract a greater amount of home equity compared to the baseline. The higher home equity extraction results in a bigger borrower consumption response in the alternate economy (1.08%, Type 1: 0.93%, Type 2: 1.15%) compared to that in the baseline economy (0.71%). Thus, having fewer borrowers who do not search for a mortgage results in a bigger borrower consumption response in the economy.

Type 2 meet 3 lenders

This economy with more search and stronger ability to statistically discriminate results in much smaller consumption response of Type 1 borrowers than benchmark due to their increased isolation and almost same response of Type 2 borrowers. We shock the steady state of this economy with the same 25 basis points reduction in the risk-free rate. As seen in Figure A.7, the difference in offer rates for the two types
increases compared to benchmark. The increased isolation of Type 1 borrower results in much higher offer rate. The increase in refinancers among Type 2’s is small as they are already at lower rate compared to benchmark. Type 1 refinancers decrease compared to benchmark because of the higher offer rates. They also have smaller home equity in steady state compared to benchmark, thus their increase in mortgage balance is lower. Home equity of Type 2 borrower is almost the same as in benchmark, hence the increase is also similar. Thus, the consumption response of Type 2 borrower (0.92%) is similar to that in benchmark but that of Type 1 (0.31%) is much smaller. Thus, if shoppers search more, the consumption response of shoppers remains almost similar but that of non-shoppers decreases a lot due to the stronger ability to statistically discriminate.

1.7 Conclusion

In this paper, we develop a model with heterogeneity in mortgage search of borrowers who refinance leading to difference in mortgage rates not only due to their own search but also crucially because of the lender’s ability to statistically discriminate based on their current mortgage. This ability becomes more potent with each round of refinancing as it isolates those who meet only one lender at high rates.

When calibrated to the US mortgage data, we find that this statistical discrimination has big welfare costs for borrowers, especially for those who meet only one lender to refinance their mortgage; and conversely, big welfare gains for lenders. It accounts for most of the welfare difference between those who meet one lender and others who meet multiple lenders. Increasing mortgage search is an explicit aim of CFPB. We find that the welfare consequences for borrowers of increasing mortgage search depend critically on how the mortgage search increases. In particular, if non-shoppers search
more, welfare increases significantly as statistical discrimination becomes less potent. But instead, if shoppers search more, then welfare decreases a lot as non-shoppers are increasingly isolated at high rates making it easier for lenders to statistically discriminate.

Statistical discrimination also reduces monetary policy transmission to consumption significantly, especially that of borrowers who meet one lender to refinance and are isolated at high rates. Note that our benchmark results are conservative since we restrict those who meet multiple lenders to meet exactly two lenders which is not true for one third of them. Thus, while designing any policy that affects the mortgage market, it is important to assess its impact on this less-intuitive ability to statistically discriminate in this market.

Our analysis and findings are grounded in data as we find a wide dispersion in the rates offered to observably similar refinancers, a lack of search for their mortgage among half the refinancers who thus end up with higher rates and smaller mortgages, U-shaped time-to-refinance in current mortgage rate and balance, and a larger home equity extraction rate in areas with more mortgage search activity.

Looking ahead, it would be important to understand the source of the lack of search in this market. For example, if low-income households are more likely to live in financial deserts and thus have a low likelihood of meeting multiple lenders to get a mortgage, their resulting higher rates and lower home equity can amplify the consumption inequality borne purely out of income inequality. Incorporating other dimensions of a refinancer like her age, income, house size and price that can be used by a lender for statistical discrimination would also be important to capture this mechanism more accurately. Endogenizing search behavior with heterogeneous search costs will allow a refinancer to search differently based on her income, house size and house price; and thus allow the aggregate search and statistical discrimination to vary according
to business cycles.
Chapter 2

Inaction, Search Costs and Market Power in the US Mortgage Market

2.1 The average refinance mortgage rates in the US declined from 6.0% in 2008 to a historical low of 3.5% in 2013. However, many mortgage borrowers failed to refinance, despite apparently having incentives to do so.2.2 This inaction is puzzling, since borrowers who do not refinance could lose out on substantial savings. Keys et al. (2016) argue that a household with a 30-year mortgage of $200,000 could save more than $60,000 in interest payments over the life of the loan by refinancing a 6.0% fixed-rate mortgage (FRM) at 4.5%, even after accounting for the refinance transaction costs. One explanation for this inaction could be that borrowers find it costly to search for a new mortgage. There is evidence to suggest that search friction exists in the US mortgage market. Specifically, more than half of the mortgage borrowers contact only one lender to refinance, despite the wide dispersion of interest rates and

2.1 Coauthored with Kian Samaee.
2.2 As documented in Agarwal et al. (2015), Johnson et al. (2015) and Keys et al. (2016).
fees for a homogeneous mortgage contract.

In this paper, we bridge the evidence on search friction and refinancing inactivity to explore the role of search costs in explaining refinancing inaction. Specifically, we ask two questions. First, what is the effect of search costs on refinancing activities? We explore two channels through which search costs inhibit refinancing. Higher search costs directly increase the cost of refinancing, and they also (indirectly) increase the loan originators’ market power and thus raise the mortgage rates offered. The second question we ask is: What is the contribution of direct versus indirect market power effect on refinancing activities? The answer to the second question is important because it would enable policy makers to evaluate which policies, mortgage designs, or market designs might be more effective in reducing search friction and, consequently, inactivity in refinancing.

To address these questions, we first use a data set, which includes information on search intensity and refinancing decisions. Next, we present evidence from the data that is indicative of refinancing inaction, search friction, and also how search intensity and refinancing decisions are related. Motivated by the evidence, we develop and estimate a dynamic equilibrium model of refinancing and search decisions. Finally, we use the estimated model to conduct counterfactual experiments.

The proprietary panel data set that we use contain detailed information on mortgage contracts and borrower characteristics. To control for the role of the borrowers’ creditworthiness in refinancing decisions, we follow the FICO® credit scores and the marked-to-market loan-to-value (LTV) ratios of the borrowers over time. These data enable us to follow the sequence of borrowers’ refinancing decisions, which means that we have access to the characteristics of both old and newly refinanced mortgages. The data includes the number of mortgage inquiries per borrower. We use the inquiries as a measure of search intensity.
From our data, we first present evidence of refinancing inactivity. We argue that at least 25% of the borrowers could have reduced their interest rates by at least 1.125 percentage points if they chose to refinance between 2009 to 2013. This is equivalent to a monthly payment reduction of at least $120. Second, we provide evidence that is indicative of search friction. We document the wide dispersion of transacted refinance interest rates for homogeneous mortgage contracts. We find that the difference between the 1st and the 99th percentiles of this distribution is almost 1.625 percentage points. We also present a negative correlation between interest rates and the number of mortgage inquiries in the refinance market, suggesting that it pays to search more. Despite this, almost 60% of the mortgage borrowers in our dataset made only one inquiry when they refinanced their mortgages. Third, we explore the relationship between search intensity and refinancing probabilities. We document a positive correlation between these two variables. Specifically, borrowers who search more at the time of a mortgage origination are more likely to refinance their mortgages later.

To explain these facts and explore their implications, we develop an equilibrium model by incorporating search into a dynamic discrete choice model of refinancing decisions. On the demand side, borrowers first decide whether or not to refinance in each period. If they choose to refinance, they search sequentially in order to find the lowest rates. Specifically, borrowers decide whether to accept the offered rate and apply for the mortgage, or whether to reject the offer and continue searching. If they apply and the application is approved, they refinance with the offered rate. If their application is rejected, they continue searching. On the supply side, loan originators take into account that gathering many quotes is costly for borrowers. They respond accordingly by offering a distribution of rates that are higher than the marginal cost of the loan origination. This model enables us to explore how search costs, directly and indirectly through market power, inhibit refinancing.
A refinancing decision requires a cost-benefit analysis for the mortgage borrowers. Refinancing costs include search costs and switching costs. The search costs of borrowers are equal to the cost of each inquiry (marginal search costs) times the total number of inquiries that they gather. The latter depends on how many times the borrowers refuse offers and the number of times their applications are declined by the loan originators. The higher the search costs, the lower the probability to refinance. This channel is what we call the direct effect of search costs on refinancing.

The benefit of refinancing comes from the flow of utilities throughout the life of a new mortgage contract. Borrowers know the distribution of the offered rates. If those who want to refinance in order to lower the interest rate of their mortgages, do not expect that they are able to reduce it significantly, they may choose not to refinance. Loan originators take into account the search friction of the borrowers and thus raise the offered refinance rates. This equilibrium effect weakens the benefit of refinancing. This channel is what we call the indirect market power effect of search costs on refinancing.

We use the model to back out the search cost distribution from the observed interest rate distribution. To do this, we need to address two complexities. First, loan originators may reject an application based on creditworthiness. Borrowers with low creditworthiness know that their chances of being approved are small; thus, they may be willing to accept a mortgage with a high interest rate in order to avoid additional search. This implies that these borrowers will behave as if their search costs are high. If we use only the interest rate distribution to estimate the search costs, we will back out search cost distribution conditional on creditworthiness, but not the unconditional one. We therefore need to separately identify the probabilities of whether loans are rejected by the loan originators or by the borrowers. We use the relationship between the number of mortgage inquiries and the interest rates to address this complexity.
We document that the negative correlation between the interest rates and search intensity becomes weaker as we explore riskier borrowers, because they are more likely to accept any offer in order to avoid additional search to get approved. Finally, the relationship between the interest rate and the number of mortgage inquiries becomes flat among the riskiest borrowers.

The second complexity comes from selection. If high search cost mortgage borrowers are less likely to refinance, then the participants in the refinance market are biased in favor of low search cost borrowers. In order to take into account this selection, we use the dynamic refinancing behavior of the borrowers. Specifically, the mentioned positive correlation between search intensity and refinancing odds helps us to infer the search costs of the borrowers based on their refinancing frequencies. The higher the search costs, the lower the refinancing probability.

We estimate the model using data from 2008 to 2015, during a period of mortgage rates’ transition of high to low. Solving a dynamic model during a transition period is computationally challenging, because we have to keep track of the distribution of offered rates and many state variables. That is why we incorporate a search model into a dynamic discrete choice framework in order to estimate the model using conditional choice probability (CCP) techniques. We build on Arcidiacono and Miller (2011) since it allows us to incorporate unobserved search costs. Specifically, we use their two-stage approach in order to estimate the model.

We find that search costs significantly inhibit refinancing. Specifically, if we completely remove search friction by assuming a zero marginal search cost for all the borrowers, the mortgage rates on outstanding mortgages decrease by 1.4 percentage points from 2009 to 2015. Eliminating the search costs directly decreases the refinancing costs. Note that we assume that switching costs are still in place. Our estimates show that, on average, the search costs are at least 30.8% of the total refinancing
costs. We also find that the indirect market power effect dominates the direct effect of search costs on inhibiting refinancing. We find that almost 75% of the decrease in outstanding mortgage rates (1.4 percentage points) is attributed to the indirect market power effect.

Finally, we use our model to study an alternative market design, that under specific assumptions can significantly increase refinancing activity by eliminating market power, even if we keep the refinancing costs unchanged. We specifically assume a centralized refinance market replaces the current decentralized one. In this market, we assume Bertrand competition among the loan originators. They compete by posting interest rates to the centralized market. Borrowers observe only one interest rate at each point in time, and they can lock in the posted rate by choosing to refinance. We assume refinancing is still costly for the borrowers. They pay for the switching costs in full, and they also pay a search cost equal to one inquiry.

Literature Review

We contribute to various branches of the literature. First, we contribute to the literature that studies the sources of inaction in consumer decision-making. Inaction in switching to financially more beneficial contracts is well documented in many markets (Ausubel, 1991; Handel, 2013; Honka, 2014; Heiss et al., 2016; Nelson, 2017; Fleitas, 2017). Moreover, search friction is also a well-documented feature of many markets (Brown and Goolsbee, 2002; Hortaçsu and Syverson, 2004; Roussanov et al., 2018; Galenianos and Gavazza, 2019; Allen et al., 2019). Our contribution is to bridge these two evidence in order to explore the role of search costs in explaining inaction.

Second, we contribute to the studies exploring decision-making in the mortgage market. Since this market is important from both the micro and the macro perspectives, exploring the poor decision-making of borrowers in this market has received particular
attention (Green and LaCour-Little, 1999; Bucks and Pence, 2008; Chang and Yavas, 2009; Woodward and Hall, 2012; Agarwal et al., 2015; Keys et al., 2016; Agarwal et al., 2017). We are the first that explore the role of search costs in making poor refinancing decisions. There are examples in the US that have explored the role of the creditworthiness of the borrowers as a barrier to refinancing (Agarwal et al., 2015 and Lambie-Hanson and Reid, 2018). We highlight the importance of search costs in explaining inaction while we take into account the effect of creditworthiness. In this regard, our paper is similar to Andersen et al. (2018), who study inactivity in refinancing in Denmark, where the borrowers’ creditworthiness is not a barrier to refinancing. Their paper highlights the role of inattention and the psychological costs. Similarly, Johnson et al. (2015) highlight the role of other factors than creditworthiness. They argue that suspicion about the motives of the financial institutions and time preference contribute to failures to refinance in the US.

Third, this paper explores and highlights the importance of selection in markets with search friction. In a search model, price elasticity of demand depends on the search cost distribution. Ignoring the selection results in the mismeasurement of this elasticity and, consequently, of the market power. Using price dispersion in a static search model is the standard method for estimating search costs (Hortaçsu and Syverson, 2004; Hong and Shum, 2006; Gavazza, 2016; Salz, 2017; Allen et al., 2019). Some studies use detailed information on shopping behavior to estimate search costs (De los Santos et al., 2012; Honka, 2014; Honka et al., 2017), but these studies also ignore the selection. The selection problem is unlikely to be an issue in retail shopping. However, in markets, in which consumers choose long-term contracts and may be inactive in adjusting their terms to more favorable ones over time, selection can lead to considerably mismeasured search costs. We address this selection by estimating a dynamic search model.
Fourth, we contribute to an estimation method for search models. We incorporate search into a dynamic discrete model in order to use CCP techniques. Moreover, we use Arcidiacono and Miller (2011) tools to estimate a search model.

Since our paper is linked to Agarwal et al. (2017) and our other study in Chapter 1 in many dimensions, we review them separately in the following.

Our paper is related to Agarwal et al. (2017) in many aspects. We follow them to use the number of inquiries as a measure of search intensity. They have access to total number of inquiries (mortgage and nonmortgage), while we fortunately have access to the number of mortgage inquiries. We follow them to use search intensity to separately identify the probabilities of whether loans are rejected by the loan originators or by the borrowers. Since screening in the refinance market is mostly based on the hard information of the borrowers captured by credit scores and LTV ratios, unlike them, we do not introduce an adverse selection. We instead write a model in which the borrowers’ creditworthiness is fully observable. They explore search friction in a static model in which approval process by lenders affect the search behavior. We extend their static model into a dynamic one to explore the role of search friction in refinancing inaction. This dynamic model allows us to highlight the importance of selection in the refinance market.

A lack of refinancing can weaken the transmission of monetary policy. Scharfstein and Sunderam (2016), Di Maggio et al. (2017), Beraja et al. (2018) and Auclert (2019) explored the mortgage refinancing channel of monetary policy. In our related study in Chapter 1, we incorporate a mortgage market with search friction into a standard New-Keynesian general equilibrium model to explore the role of search friction in the transmission of monetary policy. In that study, we also allow for statistical discrimination by lenders based on the characteristics of the current mortgage. In both studies, we find that the loan originators’ market power induced by search
friction has an important role to understand how search friction affects refinancing decisions.

2.1 Data

Our analysis relies on Equifax Credit Risks Insight Servicing and Black Knight Mc-Dash (referred to CRISM), a panel data set that merges Equifax’s credit bureau data on consumer debt liabilities with mortgage servicing data from McDash. CRISM covers about 60% of the US mortgage market during our sample period and is well suited to studying refinancing (Lambie-Hanson and Reid, 2018).

In this data set, we have access to detailed information of the mortgage contracts (LTV ratio, Debt-to-Income ratio, location of the property, mortgage size, quarter of the origination, property type, etc.). CRISM is merged with Home Mortgage Disclosure Act (HMDA) data set. We therefore have access to many characteristics of the borrowers at the time of mortgage origination (sex, ethnicity, race, income, etc.).

The Equifax data contains a borrower’s updated FICO® Score for each month. In order to measure the borrowers’ updated LTVs, we use borrowers’ remaining principal balance in the numerator, while for the denominator (home value) we follow standard practice and assume that the value of the property (whose appraisal we observe at the time of the loan origination) evolves according to a local home price in the Zillow Home Value Index (ZHVI). We specifically follow Lambie-Hanson and Reid (2018) and Abel and Fuster (2018) approach to build marked-to-market LTV ratios for each mortgage borrower.

The formal process to refinance a mortgage is as follows. First, mortgage borrowers
apply to refinance by filing an application. Depending on the loan originator, this step may be completed over the phone, online, or in person. In this application, borrowers provide information on themselves and the property. This information includes employment, income details, asset information, and details about the location and features of the property. By submitting this application, borrowers provide a consent to proceed, permitting their loan originators to move forward with the application. Second, a loan originator is required by law to provide a Loan Estimate document within three days of receiving a loan application. This document estimates the fees and closing costs for the new mortgage, such as appraisal and origination fee and title work. It also summarizes the loan terms and monthly payment. At this point, the borrower’s credit report is ”pulled” by the lender in order to determine both the borrower’s eligibility for specific loans and the interest rate to be charged to the borrower. This “pull” is recorded as “an inquiry” by the credit bureau. At this stage, borrowers have already locked in the interest rates for a specific period, typically up to 45 days. By this stage, borrowers can decide whether to continue with the current loan originator or contact other originators. Third, before approving the refinance loan, loan originators will order a home appraisal to get the property’s estimated market value. Fourth, mortgage loan officers forward the application and home appraisal to a loan processor, who will prepare and review the loan. An underwriter will then review the completed application to make a final decision based on the loan originators’ criteria. At this step, borrowers inform of the final decision on the loan application. The last step is the closing process. Once borrowers have received the final approval, they review and sign the closing documents, and also pay the costs of processing the loan application. The borrower makes monthly payments once the mortgage is settled, which depending on the loan, are either paid directly to the loan originator or to a separate loan servicer.

A unique feature of the CRISM dataset is that we have access to the number of
mortgage inquiries as a proxy for search intensity. Unlike Agarwal et al. (2017), who use the total number of inquiries as a proxy for search intensity, including both mortgage and non-mortgage inquiries, we have directly access to the number of mortgage inquiries.

We use the credit bureau data on mortgage inquiries around the “final” mortgage application (and approval) to capture the intensity of borrower search. As discussed in Agarwal et al. (2017), it is possible that borrowers may search for mortgages informally without a credit pull, such as searching for lenders and interest rates offered on the Internet. However, the final terms offered to the borrower depend on the creditworthiness of the borrowers. Lenders can therefore only offer full contract terms after verifying the borrower’s credit score (“an inquiry”) and knowing the house characteristics. Therefore, not being able to measure such informal searches should not impact the manner in which we intend to consider borrower search.

2.2 Descriptive Evidence

In this section, we document three descriptive patterns. First, we present patterns that suggest inaction in refinancing. Second, we present evidence that is indicative of search friction. Third, we document evidence indicates that search and inaction are correlated: the higher the search intensity, the higher the refinancing odds.

The evidence provided motives a model of search and refinancing decisions. We need to take into account two complexities in developing and estimating the model. First, loan originators may reject an application. We therefore need to be able to separately identify inquiries that are rejected by the borrower or by the loan originators. Second, there is a selection in the refinance market because high search cost borrowers are less likely to refinance. In this section, we provide evidence of how we use the data
on the number of mortgage inquiries to address the first complexity and the dynamic data on refinancing decisions to address the second complexity.

2.2.1 Inaction and Incentive to Refinance

Mortgage rates declined significantly in the US in the wake of the Great Recession. Figure 2.2.1 presents the dynamic of the average FRM rate in the refinance market from 2008 to 2018. The interest rate declined from 6.0% in 2008 to the historically low rate of 3.5% in the first quarter of 2013. Moreover, the interest rate was significantly lower than that of 2008 during all periods after 2013. There were potential financial incentives for many mortgage borrowers to refinance mortgages during the periods after 2008. Figure 2.2.1 follows all the loans that were originated in 2008 until they were refinanced for the first time. From 2008 to 2010, the interest rates declined by almost 1.5 percentage points, however, almost 60% of the mortgages were still not refinanced by the end of 2010. The graph indicates that more than 20% of the mortgages remained active at the end of 2013, despite the historical low rate at the begging of 2013.

To get a more accurate measure of the incentives for refinancing, we explore how much outstanding mortgage borrowers could save in interest rates through refinancing. More specifically, we follow each borrower with a mortgage over time by building an interest rate saving measure for them. This is the interest rate reduction that mortgage borrowers could have got by refinancing their mortgages to a new refinance rate \(\hat{r}_{izt} \). The average of the refinance interest rate \(\hat{r}_{izt} \) is predicted by:

\[
r_{izt} = \beta X_{it} + \mu_t + \mu_z + \epsilon_{izt}
\]

in which \(r_{izt} \) is the transacted interest rate in the refinance market of borrower \(i \) at
Figure 2.1: Dynamic of Refinancing Decisions

Note: This graph follows a representative sample of fixed-rate mortgages originated in 2008 until 2018. The right axis represents the unit of the black line. The black line presents the average of the refinance rate from the transacted data. The left axis represents the columns. The gray columns present the share of active loans from the cohort of 2008 at each point in time. The blue columns demonstrate the cumulative refinance fraction of the cohort of mortgages originated 2008. The sum of blue and gray columns at each point in time is less than one. This is because loans originated in 2008 may be terminated over time for reasons other than refinance (like early pay off, default, etc.). Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

time t in location z. X_{it} includes the FICO® Score groups, the loan-to-value (LTV) ratio groups, their interactions, and the remaining term of the mortgage contract. μ_t and μ_z are quarter and five-digit zip code location dummies. The following equation enables us to find the measure of interest rate saving for borrowers indexed by i if they refinance at time t in location z.

$$\Delta r_{izt} = r_{iz} - \hat{r}_{izt}$$ \hspace{1cm} (2.2.2)

in which r_{iz} is the interest rate on the current mortgage for borrower i with a prop-
erty located in location \(z \). Note that \(r_{iz} \), the interest rate on the current mortgage, is constant over time for borrower \(i \). The interest rate that the borrower can refinance their mortgage to, \(\hat{r}_{izt} \), may change over time. This occurs because the average mortgage interest rate in the market changes over time, or because the creditworthiness of the borrower, such as their FICOR Score or LTV changes over time, or because the remaining term of the mortgage varies.

Figure 2.2: Incentive to Refinance

Note: We use representative sample of all outstanding fixed-rate mortgages in every quarter to generate these two graphs. Panel (a) presents the percentiles of the interest rate saving if borrowers would have chosen to refinance. The black line is the dynamic of average refinance rates, which is normalized to zero at the fourth quarter of 2008. Panel (b) replicates Panel (a) in terms of monthly payment savings.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

Figure 2.2.1 presents the distribution of this measure for all the outstanding mortgages in each quarter. To clarify, Figure 2.2.1 includes all the outstanding mortgages, not only those that were originated in 2008. The panel (a) in Figure 2.2.1 shows the 25%, 50% and 75% percentiles for the interest rate saving measure (\(\Delta r_{izt} \)) distribution from the fourth quarter of 2008 to 2015. We observe that the 25% percentile of the
interest rate saving measure from 2009 to 2013 was typically positive. This means that at least 75% of the mortgages were potentially in the money to refinance. More interestingly, the 75% percentile shows that at least 25% of the borrowers from 2009 to 2015 could have saved more than 1.125 percentage points through refinancing. The panel (b) in Figure 2.2.1 shows the equivalent graph in terms of monthly payment savings. This graph indicates that at least 25% of the borrowers from 2009 to 2015 could have saved almost $120 in monthly payments through refinancing.

We interpret the persistently wide positive gap between the interest rates of the outstanding mortgages and the average refinance rates as suggestive evidence of inactivity in refinancing. Inactivity in refinancing for the periods after the Great Recession has been well documented in other studies with different data sets (Agarwal et al., 2015 and Keys et al., 2016).

2.2.2 Interest Rate Dispersion and Search Intensity in the Refinance Market

Our data present a wide dispersion in interest rates for a homogeneous mortgage contract in the refinance market. We specifically focus on the refinance market, since this is the market that borrowers only enter for mortgage shopping. We suspect that, at the time of purchase, most borrowers put more effort into searching for the best property than into finding the lowest mortgage rate. As a result, the dispersion in interest rates in the purchasing market may be a misleading indication of the mortgage shopping of borrowers. The following regression uses our data to document that a long list of variables cannot explain the wide dispersion in interest rates.

\[
r_{izt} = \beta X_{it} + \mu_t + \mu_z + \epsilon_{izt}
\] (2.2.3)
Figure 2.3: Interest Rate Residual
Note: This graph shows the residual of transacted interest rates. We control for a long list of variables such as the FICO® Score, the loan-to-value (LTV) ratio, Debt-to-Income (DTI), income, term, demographics, five-digit zip code location dummies and quarter dummies. The difference between the 1st and the 99th distribution of the transacted interest rates is 162.5 basis points. The graph shows a wide dispersion in refinance interest rates for homogeneous mortgage contracts.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

in which r_{izt} is the transacted interest rate in the refinance market of borrower i at time t in location z. X_{it} includes variables such as the FICO® Score, the loan-to-value (LTV) ratio, Debt-to-Income (DTI), income, term, and demographics. μ_t and μ_z are quarter and five-digit zip code location dummies. Figure 2.2.2 shows the interest rate residuals. The difference between the 5th and the 95th distribution of the transacted interest rates is 108.0 basis points. Moreover, the difference between the 1st and the 99th distribution of the transacted interest rates is 162.5 basis points. We also find similar dispersion in Chapter 1 from a different data set in the US mortgage market.

In our data, we do not have access to points and fees information. Some borrowers may pay higher upfront fees in order to lower the interest rates. These borrowers are not necessarily the low search cost ones, who could find lower rates. Ignoring the points and fees could potentially invalidate our interpretation that dispersion in
interest rates is suggestive of search friction. However, Agarwal et al. (2017) and Alexandrov and Koulayev (2018) still find that borrowers pay substantially different mortgage rates, even after adjusting for points and fees.

We use the number of mortgage inquiries as a measure of search intensity. Analyzing this variable provides more suggestive evidence of search friction in the US mortgage market. The distribution of the number of mortgage inquiries suggests a lack of mortgage shopping. Figure 2.2.2 indicates that almost 59.1% of the mortgage borrowers in our data only get one inquiry regarding refinancing a mortgage, despite the wide dispersion in the refinance interest rates. The evidence of a lack of mortgage shopping is also documented by Alexandrov and Koulayev (2018) and in Chapter 1, using the National Survey Mortgage Origination (NSMO) data set.

![Figure 2.4: Number of Mortgage Inquiries Distribution](image)

Note: This graph shows the distribution of the number of mortgage inquiries in the refinance market between 2009-2015. The last column includes 5 and more number of inquiries. It is unlikely to observe more than 5 inquiries in our data.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.
We finally explore how search intensity and refinance interest rates are correlated. The following regression provides the correlation between interest rate and number of mortgage inquiries.

\[r_{izt} = \sum_{n=1}^{5} \beta_n 1(n_{izt} = n) + \beta X_{it} + \mu_t + \mu_z + \epsilon_{izt} \]

(2.2.4)

in which \(r_{izt} \) is the transacted interest rate in the refinance market of borrower \(i \) at time \(t \) in location \(z \). \(X_{it} \) includes variables such as Debt-to-Income (DTI), income, and demographics. \(\mu_t \) and \(\mu_z \) are quarter and five-digit zip code location dummies.

From the regression, we can find the conditional correlation between interest rates and number of mortgage inquiries \(\{\hat{\beta}_n\} \). We analyze this correlation for different groups of the FICO® Score and loan-to-value (LTV) ratio by running separate regressions among each group.

Figure 2.2.2 presents \(\{\hat{\beta}_n\}_{n=1}^5 \) across the borrowers’ creditworthiness. We document that the correlation between interest rate and number of mortgage inquiries is either negative or flat across the borrowers’ creditworthiness. Figure 2.2.2 shows a negative correlation among superprime borrowers (with FICO® Scores above 740) with an LTV below 80%. This negative correlation suggests that it pays to search more.

One complexity that we need to take into account in developing and estimating the model is that loan originators may reject an application. We therefore need to be able to separately identify inquiries that are rejected by the borrower or by the loan originators. We do not have access to the application data for identifying these two channels. Borrowers with poor creditworthiness may accept any offer in order to avoid future searches. If we ignore such behavior, we may incorrectly classify borrowers with a low credit quality as borrowers with high search costs (Agarwal et al., 2017). We argue that the correlation between the number of mortgage inquiries and the interest rates differ across the borrowers’ creditworthiness, and this evidence helps us
Figure 2.5: Search Intensity and Interest Rate Across Borrowers’ Creditworthiness

Note: This graph shows the correlation between interest rates and number of mortgage inquiries among borrowers with different creditworthiness. As we explore riskier borrowers, the correlation becomes weak.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

to identify these two probabilities. In Figure 2.2.2, we observe that the correlation between interest rates and search intensity becomes weaker as we explore riskier borrowers. We can see this weaker correlation among prime borrowers (with FICO® Scores between 620 and 740) with an LTV above 80%. Finally, we do not observe a significant correlation between interest rate and number of mortgage inquiries among subprime borrowers (with FICO® Scores below 620) and LTV ratios above 80%.

We interpret the wide dispersion in interest rates and the lack of mortgage shopping, while it pays to search more, as suggestive evidence of search friction in the refinance market.
2.2.3 Search Intensity and Refinance

Having documented evidence suggestive of search friction and inaction in refinancing, we want to explore how these two are correlated. Specifically, this section explores the correlation between search intensity and refinancing probability.

In order to find this correlation, we specify a logit regression in equation 2.2.5. The dependent variable is the binary refinancing decision with $\text{Refi}_{izt} \in \{0, 1\}$. Specifically, this binary variable is equal to 1 if the borrower i refinance their mortgage at time t in location z. Otherwise, it is equal to 0. On the right-hand side of equation 2.2.5, we include the number of mortgage inquiries at the time of mortgage origination. Note that the number of mortgage inquiries are the fixed effects in this regression. We also control for the incentive to refinance measure that we built in section 2.2.1. The logit regression is as follows:

$$\text{Refi}_{izt} = \sum_{n=1}^{5} \beta_n 1(n_{iz} = n) + \beta_r \Delta r_{izt} + \beta X_{it} + \mu_z + \mu_t + \epsilon_{izt} \quad (2.2.5)$$

in which X_{it} include variables such as the FICO® Score, the loan-to-value (LTV) ratio, Debt-to-Income (DTI), income, term, and demographics. μ_t and μ_z are quarter and five-digit zip code location dummies.

Figure 2.2.3 presents the odds ratio for the number of inquiries. It shows that borrowers who search five times to originate a mortgage are 17% more likely to refinance a mortgages in every quarter, although this is conditional on them having the same incentives to refinance and the same creditworthiness. This evidence indicates that those who search more at the time of mortgage origination (shoppers) are more likely to refinance their mortgages, conditional on having the same incentives to refinance and creditworthiness. This evidence documents the heterogeneity in refinancing among borrowers, with the same incentives for refinancing and the same
Figure 2.6: Search Intensity and Refinance Probability

Note: This graph shows the conditional correlation between refinance probabilities and the number of mortgage inquiries (search intensity) at the time of origination. More specifically, we use the number of mortgage inquiries at the time of mortgage origination as a fixed effect of a Logit regression in which the binary refinancing choice is the dependent variable. The refinancing odds for the first inquiry is normalized to one. We control for a long list of variables to find the conditional correlation such as time of origination, incentive to refinance measure, creditworthiness, etc.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

We need to take into account a complexity coming from selection in the refinance market in developing and estimating the model. The evidence of this section suggests that there is selection because borrowers with low search intensity, potentially high search cost borrowers, are less likely to refinance. We use the dynamic data on refinancing to address this complexity. Specifically, the documented positive correlation between search intensity and refinancing odds helps us to infer their search behavior based on their refinancing frequencies.
2.3 An Equilibrium Model of Mortgage Refinancing and Search Decisions

Motivated by the evidence from the data, we develop a model of mortgage refinancing and search decisions. We extend the static sequential random search model in Agarwal et al. (2017) into a dynamic discrete choice framework. In a random search model, there is a distribution of offered rates for a homogeneous mortgage contract. Therefore, borrowers only know the range of interest rates they may find. This range depends on both the offered rate distribution and the borrower choice for the reservation interest rate. Given the offered rate distribution and reservation interest rate, we can find the transition probability of interest rates. Therefore, we develop a search model within a dynamic discrete choice framework by adding the transition probability of interest rates into the transition probability of a dynamic discrete choice model.

The model is an equilibrium model. On the demand side, there are borrowers who are heterogeneous in search costs and creditworthiness. They make refinancing and search decisions. On the supply side, there are homogeneous loan originators who offer rates while they take borrowers’ search friction into account. We discuss the demand in section 2.3.1 and the supply in section 2.3.2.

2.3.1 Demand

We propose a model for a borrower with a mortgage who decides whether or not to refinance. We only take into account fixed-rate mortgage (FRM) contracts, which are the dominant type of contracts in the US. The borrowers are indexed according to their type and the characteristics of their current mortgage during each period. The
borrower type includes two variables: search costs \((c)\) and FICO\(^®\) Score \((\theta_t)\). The search costs are not observable to the loan originators, while the credit scores are. Search costs are persistent, meaning that borrowers’ search costs do not change over time. Credit scores \((\theta_t)\) change over time based on a Markov Process. We represent the current mortgage of a borrower by its interest rate \((r)\) and other characteristics \((x_t)\), which include current loan-to-value ratio \((\text{LTV}_t)\) and the remaining term of the mortgage \((\text{term}_t)\). \(x_t\) evolve according to a Markov Process. In Equation 2.3.1, we summarize the state variable of a borrower:

\[
z_t = \left(c, \theta_t, r, x_t \right)
\]

(2.3.1)

All the variables in the model are discrete. We define five groups of search costs \((c \in \{1, 2, \ldots, 5\})\) and eleven groups of credit scores \((\theta_t \in \{\text{below 620}, \text{620-639}, \text{640-659}, \ldots, \text{above 800}\})\). We define seven groups for LTV ratios \((\text{LTV}_t \in \{(0, 0.6], (0.6-0.7], (0.7-0.75], (0.75-0.{800}{89}5], (0.8-0.9], (0.9-1], (1, +\infty)\})\). We consider three groups for the remaining term of the mortgage in months \((\text{term}_t \in \{\text{below 209}, \text{210-329}, \text{above 330}\})\). The interest rates are also discrete because we almost always observe the interest rates in increments of 12.5 basis points in the data.

Borrowers may refinance due to different incentives. Since the interest rate on a FRM contract is fixed, borrowers may want to refinance in order to get a lower rate if they can find one (a rate refinance). However, the borrowers may also refinance for other reasons, such as: cashing out a home equity (cash-out refinance), paying off a fraction of the remaining principal (pay-off refinance), or changing the term of the current mortgage (term-refinance).

If a borrower chooses to refinance, the old mortgage is terminated and they are expected to choose a new mortgage with new features (LTV, term, and interest rate).
We assume a specific sequence for the borrower’s decision-making. The borrowers first choose the new LTV and term, and they then choose the interest rate of the new mortgage. We assume that all loan originators provide all the possible combinations of mortgages with different LTV and terms. They may offer different interest rates for a homogeneous (identical LTV and term) mortgage contract, and the borrowers know that there is price dispersion. However, borrowers will not know what rate the originators are offering to them until they request a quote. Borrowers can gather quotes from various loan originators. Gathering quotes are costly for the borrowers because of search costs. These search costs may come from various sources. For some borrowers, search costs exist because their opportunity cost of time is high. For some, it exists, for instance, because they find it costly to interact with the financial institutions.

In Figure 2.3.1, we demonstrate the decision sequence of a borrower with a mortgage. Borrowers first decide whether to refinance or not. Second, those who choose to refinance, decide $j \in \mathbb{X}$, which is the LTV and term of the new mortgage contract. \mathbb{X} includes 21 contracts that comes from all the combinations of LTV ratios and terms. We use $j \in \{0\}$ to denote borrowers who choose not to refinance. Third, those who choose to refinance a new mortgage with specific LTV and term, search sequentially to find the best rates. The borrowers know the distribution of the rates offered. Each loan originator offers a rate based on the credit score, LTV, and term at each point in time. We denote the offered rate distribution by $h_{j\theta t}(r)$ and its CDF by $H_{j\theta t}(r)$. More specifically, for contract j, credit score θ in period t, there is a distribution of interest rates. Borrowers draw i.i.d. with replacement from the offered distribution.

In the search stage, borrowers decide whether to accept the offered rate and apply for the mortgage, or whether to reject the offer and continue searching. If they apply and

2,3 Alexandrov and Koulayev (2018) explore a model in which the borrowers are unaware of price dispersion.
Borrower Type: Search cost \((c) \) and FICO® Score \((\theta_t) \),
Current Mortgage: Interest rate \((r) \) and Other Characteristics \((x_t = \text{LTV}_t, \text{term}_t) \)

Refinance

Choose new LTV and term of the new mortgage \((j \in X) \)

Search for interest rate \((r_{t+1}) \) of the new mortgage

borrower state variable in the next period:
\((c, \theta_{t+1}, r_{t+1}, j) \)

Not Refinance

borrower state variable in the next period:
\((c, \theta_{t+1}, r, x_{t+1}) \)

Figure 2.7: A Borrower Refinancing and Search Decision Tree

Note: This graph presents the decision making on the demand side of the model. This is a Nested Logit model. Borrowers with a mortgage first decides whether to refinance or not. If they refinance, they then decide which LTV ratio and term choose for the new contract. Finally, they search for the best rates. Those who do not refinance keep the mortgage with the same rates. We also show how the state variables of those who refinance versus those who do not evolve over time.

If the application is approved, they refinance with the offered rate. However, if their application is rejected, they will search again. Note that, when borrowers choose to refinance and subsequently they start to search, they cannot go back to the original mortgage anymore. They must search until finally they refinance with a new interest rate.

A refinancing decision requires a cost-benefit analysis for the mortgage borrowers. The
refinancing costs include search costs and switching costs. The presence of refinancing costs makes the borrower’s problem dynamic because borrowers may hold on to a mortgage for quite a while. Therefore, the benefit of refinancing comes from the flow of utilities throughout the life of the new mortgage contract plus the realization of an extreme value i.i.d. taste shock.

Equation 2.3.2 is the indirect utility of the borrower with a state variable of \(z_t = (c, \theta_t, r, x_t) \) who chooses \(j \) at time \(t \) before receiving the taste shock.

\[
 u_{jt}(z_t) = \begin{cases}
 u_{\theta x} - r & \text{if } j \in \{0\} \\
 u_{\theta x} - r - R_{j\theta x_t}, & \text{if } j \in X
 \end{cases} \quad (2.3.2)
\]

We use \(R \) to denote the total refinancing costs, which is the sum of the switching costs and the search costs. The flow utility of the borrower comes from the current mortgage during every period, irrespective of whether or not they choose to refinance. If borrowers choose to refinance in period \(t \), they pay for the refinancing costs. The benefit of refinancing comes from the future life of the new mortgage, which starts from period \(t + 1 \). The utility of a borrower comes from borrower’s type and the characteristics of the mortgage. We normalize the coefficient of the interest rate to one, with the higher the interest rate of a mortgage contract, the lower the utility. Borrowers have utility over LTV ratio and term of their mortgage. These characteristics are also interacted with credit scores. \(u_{\theta x} \) captures the incentives for refinancing other than lowering the interest rate.

Since the problem of a borrower is dynamic, they compare the total expected payoff for a given choice when they want to make a refinancing decision. We use \(v_{jt}(z_t) \) to denote the total expected payoff (before receiving the taste shock) for choice \(j \) at time \(t \) when the borrower is at the state of \(z_t \). After receiving the taste shock \(\epsilon_{jt} \), the borrower chooses whether not to refinance \((j \in \{0\}) \) or refinance, and chooses a new
mortgage \((j \in X)\):

\[
\max_{j \in \{0, X\}} v_{jt}(z_t) + \epsilon_{jt} \tag{2.3.3}
\]

in which \(\epsilon_{jt}\) is the nested logit shock that comes from a generalized extreme value distribution. Specifically, there is no correlation between nests, and \(\text{Cov}(\epsilon_{0t}, \epsilon_{jt}) = 0, \forall j \in X\). \(1 - \sigma\) is the correlation within the nest \((\sigma \in [0, 1])\).

\(v_{jt}(z_t)\) is the sum of the flow utility from Equation 2.3.2 and also a discounted expectation of continuation values:

\[
v_{jt}(z_t) = u_{jt}(z_t) + \beta \sum_{z_{t+1}} V_{t+1}(z_{t+1}) f_{jt}(z_{t+1} | z_t) \tag{2.3.4}
\]

in which \(V_{t+1}(.\) is the unconditional value function and \(f_{jt}(.\) is the transition probability.

The transition probability depends on whether or not the borrower chooses to refinance. If the borrower chooses not to refinance, they will keep the same mortgage. Since the contract is a fixed-rate mortgage, the interest rate remains unchanged. We need to follow how the credit score, the LTV ratio, and the remaining term of the contract may change over time. The LTV ratio evolves for two reasons. First, the remaining mortgage principal declines over time and, second, the value of the property may change over time. The borrower who does not choose to refinance starts the following period with a state variable of \((c, \theta_{t+1}, r, x_{t+1})\), as we demonstrated in the decision tree of a borrower in Figure 2.3.1. If the borrower chooses to refinance, they first choose the new LTV and the term of the new mortgage. They then search to find a rate. The set of interest rates that a borrower may find depends on the distribution of offered rates and on the reservation interest rate of the borrower. Specifically, the borrower with reservation interest rate of \(r^*_j c \theta_t\) who chooses to refinance to contract \(j\), will get interest rate \(r_{t+1}\) with probability of \(h_{jt}(r_{t+1} | r^*_j c \theta_t)\). In other words,
$h_{j\theta t}(r_{t+1}|r^*_j \theta t)$ is the transition probability of the interest rate for the borrower who chooses to refinance to contract j. This borrower will start the following period with a state variable of $(c, \theta_{t+1}, r_{t+1}, j)$, as we demonstrated in the decision tree of a borrower in Figure 2.3.1. In fact, by incorporating the distribution of offered rates into the transition probability, we develop a search model within a standard dynamic discrete choice framework. The Equation 2.3.5 presents the transition probability:

$$f_{jt}(z_{t+1}|z_t) = \begin{cases} (1 - \delta_\theta) f_{0t}(\theta_{t+1}, x_{t+1}|\theta_t, x_t) & \text{if } j \in \{0\} \\ (1 - \delta_\theta) h_{j\theta t}(r_{t+1}|r^*_j \theta t) f_{1t}(\theta_{t+1}|\theta_t) & \text{if } j \in X \end{cases} \tag{2.3.5}$$

The transition function $f_{0t}(.)$ captures the dynamic of (θ, x) when the borrower chooses not to refinance. $f_{1t}(.)$ captures the dynamic of the credit scores when the borrower chooses to refinance and, $h_{j\theta t}(r_{t+1}|r^*_j \theta t)$ captures the transition to the new mortgage rate. As a standard dynamic discrete choice model, both $f_{0t}(.)$ and $f_{1t}(.)$ evolve according to a Markov Process.

A mortgage contract may also be terminated for reasons other than refinancing, such as default shock, moving shock, etc. We need to take this into account because it may affect the refinancing decision. For example, if the borrowers know that they want to sell the property to move to another city, they may not have the incentive to refinance the mortgage to a lower rate. δ_θ in Equation 2.3.5 captures the termination shock for reasons other than refingancing. We allow that the termination shock to be a function of the creditworthiness of the borrowers. For example, we expect that the higher the creditworthiness of the borrowers, the lower the default probability of the mortgage.

The transition probability of the interest rate when borrowers choose to refinance to contract j, namely $h_{j\theta t}(r_{t+1}|r^*_j \theta t)$, is both a function of offered rate distribution and the choice of borrowers for reservation interest rate. We therefore need to present
the borrower’s search decision in the search stage, as demonstrated in the decision
tree of the borrower in Figure 2.3.1. A borrower contacts a loan originator in the
search stage in order to get quotes. A borrower with an offered interest rate of \(\tilde{r} \)
decides whether to accept the offer or whether to reject it and search for a lower rate.
The marginal cost of a borrower of search type \(c \) for getting another quote is \(\kappa_c \). We
assume that the marginal cost of the search is constant, and that it does not depend
on the number of inquiries. We denote the benefit of an additional search function
with \(B_{jc\theta t}(.) \) in Equation 2.3.6:

\[
B_{jc\theta t}(\tilde{r}) \equiv \beta(1 - \delta_{\theta})\lambda_{j\theta t} \sum_{\theta_{t+1}, r_{t+1}} \left(V_{t+1}(c, \theta_{t+1}, r_{t+1}, j) - V_{t+1}(c, \theta_{t+1}, \tilde{r}, j) \right) h_{j\theta t}(r_{t+1}) f_{1t}(\theta_{t+1}|\theta_t) \tag{2.3.6}
\]

The marginal benefit of search captures the additional benefit of refinancing a mort-
gage with a lower interest rate. Several forces affect this marginal benefit. One is the
termination shock \(\delta_{\theta} \). If borrowers expect that they are likely to hold on to a mortgage
for quite a while, they will have low termination shock, and will have more incentive
to search for better rates. The approval probability \(\lambda_{j\theta t} \) also affects the marginal
benefits of a search. If the borrowers know that their application is unlikely to
be rejected, they will search more to find lower rates. Moreover, the marginal benefit
of a search depends on the expected value of getting a lower rate. If it is possible
that the borrowers will find significantly lower rates by increased searching, then they
will have more incentive to search. The difference between the unconditional value
function for lower rates and current rates is presented in Equation 2.3.7:

\[
V_{t+1}(c, \theta_{t+1}, r_{t+1}, j) - V_{t+1}(c, \theta_{t+1}, \tilde{r}, j) = \tilde{r} - r_{t+1} + \ln\left(\frac{P_{1,t+1}(c, \theta_{t+1}, \tilde{r}, j)}{P_{1,t+1}(c, \theta_{t+1}, r_{t+1}, j)} \right) \tag{2.3.7}
\]

The first part is the interest rate saving \(\tilde{r} - r_{t+1} \), which also appears in a static model.
The second part depends on the probability of refinancing in the following period.
This part appears due to the dynamic nature of the problem. Specifically, we use
\(P_{1,t+1}(.) \) to denote the probability of refinancing in period \(t + 1 \), regardless of the
choice of the contract. In the appendix B.1, we show the closed form solution for this probability. Finally, we can find the reservation interest rates through marginal benefit and cost of searching. The Equation 2.3.8 indicates how we find the reservation interest rate:

\[B_{j\theta}(r^*) \leq \kappa_c \implies r^*_{j\theta} \tag{2.3.8} \]

in which \(r^*_{j\theta} \) is the maximum interest rate that satisfies the above inequality. As mentioned earlier, a refinancing decision requires a cost-benefit analysis. We described the benefit of refinancing by presenting \(v_{jt}(.) \) and its components. In the following, we discuss the refinancing costs, which include search costs and switching costs. We first describe the search costs. In the search stage, borrowers search sequentially in order to find the best rates. For every draw, the borrower of type \((c)\) pays the marginal search cost \(\kappa_c\) and draws a rate \(r_{t+1}\) from the offered rate distribution \(h_{j\theta}t\). The draws are i.i.d. with replacement. The borrower decides whether to accept the offered rate \(r_{t+1}\) and apply for the mortgage, or whether to reject the offer and continue searching. If they apply, the application is approved with the probability \(\lambda_{j\theta t} \in [0, 1]\), and they refinance with interest rate \(r_{t+1}\). However, if their application is rejected, or they choose not to apply for the loan, they will search again.

The total search costs of a borrower with search cost type \(c\) who ends up getting \(n\) inquiries to refinance is \(\kappa_c n\). Borrowers form an expectation of the expected search costs before refinancing, and this depends on their type \((c, \theta_t)\), and on the contract they want to choose \((j)\). We use \(E_{jc\theta_t}[n]\) to denote the expected number of inquiries. The expected search costs conditional on refinancing for a borrower of type \((c, \theta_t)\) who chooses mortgage \(j\) at time \(t\) is \(\kappa_c E_{jc\theta t}[n]\). The expected number of inquiries depends on two probabilities, namely the probability that a borrower may reject an offer and the probability that a mortgage originator declines an application. The borrowers may choose a reservation interest rate \((r^*)\) and reject any offer above that.
Specifically, Equation 2.3.9 presents the expected number of mortgage inquiries:

\[
\mathbb{E}_{jc\theta t}[n] = \frac{1}{\lambda_{j\theta t}H_{j\theta t}(r_{jc\theta t}^*)}
\] \hspace{1cm} (2.3.9)

in which \((r_{jc\theta t}^*)\) is the reservation interest rate that the borrowers choose.

Search costs are not the only refinancing costs that may inhibit refinancing. We also assume that there are switching costs. Such costs may include the financial costs associated with refinancing a mortgage. They may also include an unwillingness to terminate a contract and originate a new contract. We use \(s_{jc\theta x}\) to denote switching costs. We assume that switching costs depend on the type of the borrowers, the current and new mortgage contracts, the LTV ratios and the terms. The Equation 2.3.10 presents the refinancing cost, which is the sum of the switching cost and the search costs:

\[
R_{jc\theta xt} = s_{jc\theta x} + \frac{\kappa_c}{\lambda_{j\theta t}H_{j\theta t}(r_{jc\theta t}^*)}
\] \hspace{1cm} (2.3.10)

One source of inactivity in refinancing may come from the high cost of refinancing. However, since refinancing costs do not all come from the financial costs of refinancing, we use our model to estimate the total refinancing costs from refinancing frequency of the borrowers. We do that and also the model helps us to separately identify the search costs from the switching costs.

Refinancing costs have a direct effect on refinancing incentives. The direct effect of search costs on refinancing incentives go through the expected search costs \(\kappa_c \mathbb{E}_{jc\theta t}[n]\). This is the most obvious channel that search costs may inhibit refinancing. In fact, borrowers may find it costly to search for a new mortgage. The second channel is that search costs indirectly increase the loan originators’ market power and thus raise the offered refinance rate. The first channel directly affects the costs of refinancing, while the second channel affects the benefit of refinancing through the equilibrium interest
The Equation 2.3.5 provides the intuition of how the indirect effect of search costs may affect the benefit of refinancing. \(h_{j\theta t}(r_{t+1}|r^*_{j\theta t}) \) governs the incentive to refinance in order to lower the interest rate of the current mortgage. If the loan originators offer high interest rates, borrowers do not have incentives to refinance.

The following section discusses the supply side of the model.

2.3.2 Supply

On the supply side, we follow Agarwal et al. (2017) in specifying the loan originator model. Since most of the residential mortgages are originated through an originate-to-sell mechanism, we assume a static model for the supply side.

A Loan originator offers interest rate \(r \) in order to maximize its expected profit. Moreover, loan originators accept an application with exogenous probability \(\lambda_{j\theta t} \). Like Agarwal et al. (2017), we do not endogenize the approval probabilities. The marginal costs of the loan originator include two parts. The first is the marginal cost of origination in the refinance market (\(\chi \)). The second is the marginal cost that depends on the type of borrower, contract and time \((j, \theta, t)\). This part is given to the loan originator and potentially comes from how the loan buyers price the loan using different characteristics. We find \(\hat{r}_{j\theta t} \) by running a regression of interest rates in the refinance market on \((j, \theta, t)\) and their interactions. Note that the changes in the funding costs, such as those due to changes in the federal funds rate, will be reflected in \(\hat{r}_{j\theta t} \).

Loan originators choose what interest rate to offer on the basis of the marginal costs and demand function. The loan originators take the borrowers’ search friction into
account and respond accordingly. More specifically, a loan originator has a rational expectation over the distribution of the search cost of the borrowers, who choose to refinance to mortgage \(j \), with credit score \(\theta \) at time \(t \). In this model, the price elasticity of demand depends on the search behavior of the borrowers. Therefore, the demand function is endogenous and Equation 2.3.11 presents it:

\[
q_{j\theta t}(r) = \sum_{\tilde{r} \geq r} \frac{\mu_{\theta t}(c, x, r') P_{j\theta t}(c, x, r') 1\{r_{j\theta t}^* = \tilde{r}\}}{H_{j\theta t}(\tilde{r})} \tag{2.3.11}
\]

in which \(\mu \) is the mass of borrowers with a mortgage in period \(t \) with the current characteristics of the borrowers and the mortgages. In appendix B.2, we discuss in details how we find the demand function. The expected profits of charging an interest rate \(r \) are therefore:

\[
\Pi_{j\theta t}(r) = (r - \hat{r}_{j\theta t} - \chi)q_{j\theta t}(r) \tag{2.3.12}
\]

The loan originators choose the interest rate in order to maximize their profits. Following Agarwal et al. (2017), we assume a logit shock \(\epsilon_{j\theta tk} \) with Type I EV distribution. We find the offer rate distribution as follows:

\[
\max_{r_k} \Pi_{j\theta t}(r_k) + \epsilon_{j\theta tk} \implies h_{j\theta t}(r_k) = \frac{\exp\left(\frac{\Pi_{j\theta t}(r_k)}{\sigma_e}\right)}{\sum_k \exp\left(\frac{\Pi_{j\theta t}(r_k)}{\sigma_e}\right)} \tag{2.3.13}
\]

Since the loan originators take the search friction into account, their demand function is inelastic. This means that borrowers can charge higher interest rates than the marginal costs of originating a mortgage. We can find the average of the markups as follow:

\[
\sum_{\tilde{r}} \tilde{r} h_{j\theta t}(\tilde{r}) - \hat{r}_{j\theta t} - \chi \tag{2.3.14}
\]

The higher the search costs, the higher the markups for the loan originators. As a result, the loan originators offer higher rates than the marginal cost, which is the indirect channel by which search costs inhibit refinancing.
2.4 Estimation

In this section, we discuss how we estimate the parameters of the model. The goal is to estimate search cost distribution along with other parameters of the model. The standard approach, in industrial organization, is to back out search cost distribution from the observed price distribution (Hong and Shum, 2006). Many used this approach to estimate the search cost distribution in the mortgage market (Agarwal et al., 2017, Alexandrov and Koulayev, 2018 and Allen et al., 2019). In section 2.2.3, we documented that: the higher the number of inquiry, the higher the probability of refinancing. If high search cost mortgage borrowers are less likely to refinance, then the participants in the refinance market are biased in favor of low search cost borrowers. By writing a dynamic model, we took into account this selection.

We estimate the model using data from 2008 to 2015, during a period of mortgage rates’ transition of high to low. Solving a dynamic model during a transition period is computationally challenging, because we have to keep track of the distribution of offered rates and many state variables. That is why we incorporate a search model into a dynamic discrete choice framework in order to estimate the model using conditional choice probability (CCP) techniques. We build on Arcidiacono and Miller (2011) since it allows us to incorporate unobserved heterogeneity. Search costs are the only unobserved heterogeneity in our model. We specifically use the two-stage Arcidiacono and Miller (2011) tools to estimate the model.

2.4.1 First Stage

We follow Arcidiacono and Miller (2011) to estimate the empirical CCPs and transition probabilities in the first stage. We incorporate a sequential search model into a dynamic discrete choice framework. As a result, the distribution of the offered rates
are included in the transition function when the borrowers choose to refinance. In this stage, we should estimate this offered rate distribution. However, estimating an equilibrium search model is computationally challenging, because we need to estimate the equilibrium offered rates through solving a functional fixed point problem. We therefore complete this stage in two steps. First, we estimate the empirical refinancing probabilities. Second, given the empirical refinancing probabilities, we estimate the offered rate distribution, marginal search costs and approval probabilities.

Note that empirical refinancing probabilities cannot be directly calculated from data since search costs are unobservable. Following Arcidiacono and Miller (2011), we use EM algorithm to estimate the empirical refinancing probabilities. We assume that there are five groups of search costs $c \in \{1, 2, 3, 4, 5\}$, higher the index number, potentially higher the (marginal) search costs. The goal of the algorithm is to classify these five groups of search costs. Mortgage borrowers within each group of search costs are similar in refinancing probability, given having the same incentive to refinance (Δr), credit scores, LTV ratios and terms of the mortgage contract (θ, x). The difference across these five groups is that, conditional on other variables, they may refinance with significantly different odds. Note that, in this stage we do not use any information of search behavior of the individuals to identify the groups. Hence, the intuition for identification comes from the evidence in section 2.2.3 that, the higher the search intensity, the higher the refinancing odds.

We use $p_{jt}(z_{it})$ to denote the empirical refinancing probabilities. This is the probability that an individual chooses to refinance to contract j at time t, given the observed state of z_{it}. Denote \mathcal{L}_t in equation 2.4.1, the likelihood of observing $(d_{it}, z_{i,t+1})$, conditional on state z_{it}. $d_{it} \equiv (d_{i1t}, ..., d_{iJt})$ is the vector of dummy variables. If individual
i chooses to refinance to contract j, $d_{ijt} = 1$, otherwise, it is zero.

$$
\mathcal{L}(d_{it}, z_{i,t+1}|z_{it}) = \prod_j [\mathbb{I}\{j = 0\}p_{0t}(z_{it})f_{0t}(z_{i,t+1}|z_{it}) + \mathbb{I}\{j \in X\}p_{jt}(z_{it})]^d_{ijt} \quad (2.4.1)
$$

where the transition probability conditional on not refinancing is as follow:

$$
f_{0t}(z_{i,t+1}|z_{it}) = (1 - \delta) f_{0t}(\theta_{i,t+1}, x_{i,t+1}|\theta_{i,t}, x_{i,t}) \quad (2.4.2)
$$

in which $z_{it} = (c_i, \theta_{it}, r_{it}, x_{it})$. We specify the refinancing probability of individual i at time t in equation 2.4.3.

$$
p_{jt}(z_{it}) = \begin{cases}
 1 & \text{if } j = 0 \\
 \frac{1}{1 + \exp(\beta c_{\theta x} + \beta_1 \Delta r_{it})} \exp(\beta c_{\theta x} + \beta_1 \Delta r_{it}) \tilde{p}_{j|1}(c, \theta_{it}, x_{it}), & \text{if } j \in X
\end{cases} \quad (2.4.3)
$$

where $\Delta r_{it} = r_{it} - \hat{r}_{it}$ is the amount of interest rate saving by rate refinancing the current mortgage to a lower rate (Equation 2.2.2). $\beta_{c\theta x}$ captures interaction between search costs, creditworthiness and mortgage characteristics. $\tilde{p}_{j|1}$ denotes contract choice conditional on refinancing, $\Sigma_{j \in X} \tilde{p}_{j|1}(c, \theta_{it}, x_{it}) = 1$. We non-parametrically estimate $\tilde{p}_{j|1}$ and f_{0t}. We estimate $(\beta_{c\theta x}, \beta_1)$, and $g_{0t}(c)$ through the EM algorithm. In appendix B.4, we discuss the details of the EM algorithm. By completing this step, we find the search costs probabilities but not the marginal search costs.

In the second step of the first stage, we estimate the offered rate distributions $h_{j\theta t}(r)$, marginal search costs κ_c and approval probabilities $\lambda_{j\theta t}$. At the end of this step, we can fully characterize the search cost distribution. To estimate these parameters, we build a likelihood function that is quite similar to Agarwal et al. (2017). Given the offer rate distribution $h_{j\theta t}(r)$ and approval probability $\lambda_{j\theta t}$, for both of which we
assume a parametric form, we denote the likelihood of observing \((r_{it}, n_{it})\) conditional on reservation interest rate \(r^*\) in equation 2.4.4:

\[
l(r_{it}, n_{it}|r^*_j) = \lambda_{j\theta t} h_{j\theta t}(r_{it}) \left(1 - \lambda_{j\theta t} H_{j\theta t}(r^*_j)\right)^{n_{it}-1}
\]

where \(n_{it}\) is the number of inquiries when a borrower refinances a mortgage. \(H_{j\theta t}(.)\) is the CDF of the offered rate distribution. When we observe \((r_{it}, n_{it})\) for borrower \(i\), it means that the borrower refinanced the mortgage to interest rate \(r_{it}\) in the \(n_{it}\)th search attempt. For \(n_{it} - 1\) inquiries, either the application was rejected by the loan originators with probability \(1 - \lambda_{j\theta t}\) or the offered refinance rate was rejected by the borrower because the offer was above the reservation interest rate. Thus, the rejection probability of an offer is \(\lambda_{j\theta t} H_{j\theta t}(r^*_j)\) for a borrower who chooses to refinance to a mortgage with characteristics \(j\) at time \(t\) with FICO® Score \(\theta\). Given the offered rate distribution, we find the reservation interest rates from the Equation 2.3.8. In this step, we also take into account that the offered rate distribution is an equilibrium object. We therefore find the offered rate distribution from the Equation 2.3.13. From this step, we estimate the parameters from the supply side which are marginal cost of origination (\(\chi\)) and the standard error of the logit shock to profit (\(\sigma_{\pi}\)). Finding the offered rate distribution is a functional fixed point problem. We follow the algorithm in Agarwal et al. (2017) to estimate the offered rate by fitting a normal distribution.

We use \(\beta^\lambda\) to denote the vector of parameters that characterizes the functional form of the approval probabilities. Similarly, we use \(\beta^h\) to denote the vector of parameters that characterizes the normal distribution for offered rate distribution \(h_{j\theta t}^{N}\). Finally, we maximize the objective function in equation 2.4.5 to find the estimate of the parameters.

\[
(\beta^\lambda, \beta^h, \sigma_{\pi}, \chi, \kappa_c) \in \operatorname{argmax} \sum_j \sum_{\theta} \sum_{t} \sum_{c=1}^{N} \frac{1}{N} \sum_{r} \mu_{j\theta t}(c) \ln(l(r_{it}, n_{it}|r^*_j)) - \sum_j \sum_{\theta} \sum_t \sum_r \left(h_{j\theta t}^N(r) - h_{j\theta t}(r)\right)^2
\]

in which the first term is the likelihood function that we want to maximize. The sec-
ond term is the distance between equilibrium offered rate h_{jt} derived in the Equation 2.3.13 and the approximated normal distribution for offered rates h^N_{jt} that we want to minimize. The reservation interest rates for any guess for offered rate distribution comes from the Equation 2.3.8.

2.4.2 Second Stage

Given the estimation results from section 2.4.1, we estimate the switching costs and utility parameters of the model following the second stage of Arcidiacono and Miller (2011). Intuitively, we minimize the distance between the empirical refinancing probabilities $p_{jt}(z_t)$ estimated in 2.4.3 from the structural refinancing probabilities $P_{jt}(z_t)$ derived in B.1.2 to estimate the utility and switching costs. Following 2.4.1, we estimate the parameters as follow:

$$\{u_{θx}, s_{jcθx}\} \in \arg\min ||v_{jt}(z_t) - v_{0t}(z_t) + ψ_j[p_t(z_t)] - ψ_0[p_t(z_t)]||$$

(2.4.6)

where $ψ_j[.]$ is the correction term for a nested logit model.

$$ψ_k[p_t(z_t)] = \begin{cases} -\ln(p_{0t}) & \text{if } k = 0 \\ -\ln(p_{1t}) - σln(p_{kt1}) & \text{if } k \in X \end{cases}$$

(2.4.7)

The difference $v_{jt}(z_t) - v_{0t}(z_t)$ is a function of the future empirical refinancing probabilities. Calculating this can be potentially difficult if we want to simulate for many periods ahead. However, our model provides one-period finite dependence property, which makes the estimation of the parameters in the second stage fairly easy. In fact, we can characterize the $v_{jt}(z_t) - v_{0t}(z_t)$ as a function of the one-period ahead empirical refinancing probabilities. The intuition behind the one period ahead finite dependence is as follows. Suppose that two borrowers with the same search costs
refinance to different arbitrary contracts. If they both refinance to a same arbitrary contract in the next period, they will have the same continuation value.

2.5 Estimation Results

In this section, we discuss the estimation results. As discussed earlier, we estimate a search cost model while considering two complexities. The first complexity is that loan originators may reject an application based on creditworthiness. To address this complexity, we separately identify the probabilities of the loans being rejected by the loan originators or by the borrowers. In the Section 2.5.1, we present the estimates of the approval probabilities. The second complexity is derived from the selection. If high search cost mortgage borrowers are less likely to refinance, then the participants in the refinance market are biased in favor of low search cost borrowers. In Section 2.5.2, we argue how search cost distribution is different from the distribution of those who choose to refinance. In Section 2.5.3, we then present the estimates for search costs and their shares in total refinancing costs. In the last two Sections, we discuss the answers to the two research questions that we raised. In Section 2.5.4, we discuss the effects of search costs on refinancing activities. In Section 2.5.5, we explore the contribution of the direct and the indirect market power effect on refinancing.

2.5.1 Borrowers’ Creditworthiness and Approval Probability

Loan originators may reject an application based on the borrowers’ creditworthiness, which affects the borrowers’ search behavior. Those with low creditworthiness know that their chances of being approved are small; thus, they may be willing to accept a mortgage with a high interest rate to avoid the additional search. This implies
that these borrowers will behave as if their search costs are high. If we use only the interest rate distribution to estimate the search costs, we will back out the search cost distribution conditional on creditworthiness, but not the unconditional one. In this Section, we detail the distribution of the borrowers’ creditworthiness and approval probabilities.

![Figure 2.8: Distribution of Borrowers’ Creditworthiness](image)

Note: This graph presents the distribution of the borrowers’ creditworthiness in 2008. The columns from left to right present subprime (FICO® Scores below 619), prime (FICO® Scores between 620 to 739) and superprime (FICO® Scores above 740) borrowers, respectively. The first row presents the low LTV borrowers (LTV ratio below 80%). The second row presents the high LTV borrowers (LTV ratio above 80%).

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

In Figure 2.5.1, we present the distribution of borrowers with different levels of creditworthiness in 2008. For improved data presentation, we aggregate LTV ratios into two groups: LTV ratios above 80% and those below 80%. We also aggregate the FICO® Scores into three groups: subprime (FICO® Scores below 619), prime (FICO® Scores between 620 and 739) and superprime (FICO® Scores above 740) borrowers. This distribution is directly derived from the raw data. The graph illustrates that most of the borrowers, 93%, are prime or subprime borrowers. However, almost 54% of the borrowers have LTV ratios above 80%. This result is consistent with a significant
Figure 2.9: Estimates of Approval Probabilities

Note: In this graph, we present the estimates of approval probabilities (λ_{jt}). The columns from left to right represent subprime (FICO® Scores below 619), prime (FICO® Scores between 620 and 739) and superprime (FICO® Scores above 740) borrowers, respectively. The first row represents the low LTV borrowers (LTV ratio below 80%). The second row represents the high LTV borrowers (LTV ratio above 80%).

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

house price shock in the wake of the Great Recession. Furthermore, Figure 2.5.1 confirms that there is heterogeneity in the borrowers’ creditworthiness. If the borrowers’ approval probabilities are different, we should consider this difference in the search cost estimation.

Figure 2.5.1 displays the estimates of the approval probabilities across borrowers’ creditworthiness and time. The approval probabilities can range from 0.42 to 0.99. There is also a significant difference between the approval probabilities among borrowers with LTV ratios below 80% and those with LTV ratios above 80%.
2.5.2 Search Cost Distribution and Selection

Figure 2.5.2 illustrates the distribution of the search costs. Since we estimate a dynamic model, we can verify from the estimates whether the selection exists in the refinance market. The top row presents the distribution of the search costs, and the second row presents a distribution of the search costs in a typical refinance.
market. This distribution is similar to the log-normal search cost distribution estimated in static search cost models in the US mortgage market (Agarwal et al., 2017 and Alexandrov and Koulayev, 2018). The high search cost borrowers ($c = 5$) includes more than half of the borrowers in the mortgage market who also have a low share in the refinance market. These borrowers have low probabilities of refinancing.

The third row in Figure 2.5.2 presents the reservation interest rate distribution for each group of search costs. Interest rates and reservation interest rates in any refinance market can fill in the range of $\{-0.75, -0.625, \ldots, 0.875\}$ percentage points around the mean of the offered rates. For example, if the average offered rates in a refinance market is 4 percentage points, the offered rates can range between 3.25 and 4.875 percentage points. The third row in Figure 2.5.2 displays the distribution of the reservation interest rates of each group of search costs in different refinance markets (LTV ratios, terms, FICO® Scores and quarters (j, θ, t)). This graph illustrates that borrowers with search costs $c \in \{3, 4, 5\}$ have the highest reservation interest rate (0.875 percentage points above the average offered rates) in any refinance market. Borrowers with search costs $c \in \{1, 2\}$ are shoppers in the model. They never choose an interior value for the reservation interest rates, meanings that there are offered rates that these borrowers do not accept.

Borrowers with different search costs, in equilibrium, have different refinancing and search behavior. The search cost group ($c = 5$) is not likely to refinance. If these borrowers refinance, they accept any offer. Borrowers with search costs $c \in \{3, 4\}$ are more likely to refinance compared to the highest search cost group. However, like the highest search cost group, these borrowers do not search for lower rates and accept any offer. Borrowers with search costs $c \in \{1, 2\}$ are more likely to refinance than other groups; they are the shoppers and search for lower rates.

24Refinance markets are characterized by LTV ratios, terms, FICO® Scores and quarters (j, θ, t). To find the typical refinance market we find the weighted average of all refinance markets.
2.5.3 Search Costs and Switching Costs

In this section, we discuss the estimation results for refinancing costs. As discussed in detail in section 2.3.1, refinancing costs include search costs and switching costs. Search costs \(\left(\frac{\kappa_c}{\lambda_{j\theta t} H_{j\theta t}(r_{j\theta t}^*)} \right) \) depend on the marginal search costs \(\kappa_c \), approval probabilities by loan originators \(\lambda_{j\theta t} \) and approval probabilities by borrowers \(H_{j\theta t}(r_{j\theta t}^*) \). Search costs can differ across search costs groups, LTV ratios, terms, FICO® Scores and quarters \((c, j, \theta, t)\).

Based on the notation defined in the model in Section 2.3.1, we find the share of the search costs \(\left(\frac{\kappa_c}{\lambda_{j\theta t} H_{j\theta t}(r_{j\theta t}^*)} \right) \) of the refinancing costs \(R_{j\theta xt} \). The panel (a) in Figure 2.5.3 depicts the share of the search costs of the refinancing costs across different refinance markets. The share of the search costs ranges from almost 0.1 to 0.4 of the refinancing costs. The search costs include almost 30.8% of the refinancing costs on average.

The panel (b) in Figure 2.5.3 presents the search costs in monetary values. We estimate that the search costs for a mortgage of $100,000 are in the range of $400 to $2000, and are $1586.6 on average.

2.5.4 The Effect of the Search Costs on Refinancing

In this section, we address the first question of the paper: what is the effect of the search costs on refinancing activities? Since the period of 2008-2015 is a period of mortgage rates’ transition from high to low, borrowers mainly refinanced to lower their mortgage rates. Therefore, we can implicitly analyze the refinancing activities by following the dynamic of the mortgage rates on outstanding loans and its gap from the offered rates in the refinance market.
Figure 2.11: Estimates of Search Costs in Refinancing Costs

Note: This graph reports the estimates of the search costs. The panel (a) presents the share of the search costs \(\frac{\kappa_c}{\lambda_c H_{j\theta t}} \) in total refinancing costs \(R_{j\theta t} \). Each dot represents this share for a specific search cost, LTV ratio, term, FICO® and and quarter \((c, j, \theta, t, x) \). The panel (b) displays the search costs for a loan of $100,000.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

In Figure 2.5.4, we compare the benchmark economy to an alternative economy in which there is no search costs. The solid green line represents the average mortgage rates on outstanding loans in the benchmark economy. The green dashed line represents the average of the offered rate distribution. There is a gap between the mortgage rates and the offered rates, which results from inactivity in refinancing. Borrowers with search costs and switching costs choose not to refinance their mortgages to lower rates.

In the alternative economy, we assume that the marginal search costs for all borrowers equal zero \((\kappa_c = 0 \ \forall c \in \{1, 2, ..., 5\}) \). We then use our structural model to solve for the new model. The solid red line in Figure 2.5.4 is the average of the mortgage rates in the economy without search costs. The interest rates on outstanding mortgages
Figure 2.12: Search Costs and Refinancing

Note: The solid lines represent the average mortgage rates on outstanding loans. The dashed lines represent the average offered rates. The green lines are the estimate of the model for the benchmark economy. The red line is the alternative economy in which there are no search costs. We assume that the marginal search costs for all borrowers equal zero ($\kappa_c = 0 \ \forall c \in \{1, 2, \ldots, 5\}$).

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

decline by about 1.4 percentage points on average, so the answer to the first question of the paper is that the search costs significantly inhibit refinancing.

The dotted red line in Figure 2.5.4 is the average offered rate in the alternative economy. We observe that there is a significant reduction in the offered rates. The average decline in the offered rates during this period is 1.08 percentage points. Like the benchmark model, there is a gap between the interest rates on outstanding mortgages and the offered rates in the counterfactual model because switching costs exist in the counterfactual economy. Switching costs inhibit refinancing activities in the alternative economy. The gap between the average mortgage rates and the offered rates is smaller in the model without search costs.
Search costs inhibit refinancing through two channels. The first channel is the direct effect, and the second is the indirect market power effect. The average reduction of the offered rates by 1.08 percentage points result from the elimination of the market power of the loan originators induced by search friction. This reduction in the interest rates encourages the mortgage borrowers to refinance their mortgages. In Section 2.5.5, we explain how we find the contributions of the direct effect versus the indirect effect on refinancing activities.

2.5.5 The Direct Effect versus the Indirect Effect of Search Costs on Refinancing

In this section, we address the second question of the paper: what are the contributions of the direct versus the indirect market power effect on refinancing activities?

First, we explain how we determine the direct effect. We assume that borrowers do not pay for the search costs while they still have their marginal search costs. We set \(\lambda_{jyt} \frac{\kappa_c}{H_{jyt}(r_{jyt})} \) equal to zero for borrowers. If borrowers choose to refinance, they do not pay for this search costs. However, the marginal search costs \(\kappa_c \) are still in place. We also assume that offered rate distributions are equal to the one in the benchmark. We assume this to keep the market power effect unchanged. Under this scenario, the borrowers will not change their search behavior when they refinance.

Second, we explore the indirect effect of the search costs on refinancing. To find the indirect effect, we assume that what borrowers pay for the search costs equals what they pay in the benchmark model. We set \(\lambda_{jyt} \frac{\kappa_c}{H_{jyt}(r_{jyt})} \) equal to the benchmark economy. However, the marginal search costs for all borrowers equal zero (\(\kappa_c = 0 \ \forall c \in \{1, 2, ..., 5\} \)). This is as if borrowers must pay upfront search costs if they choose to refinance; however, getting an inquiry becomes free during the search
process. Next, we solve for the equilibrium and find the new offered rate. This assumption eliminates the loan originators' market power induced by search costs. All borrowers search for the lowest rates offered. In equilibrium, there is a single price equal to the minimum of the offered rate distribution in the benchmark economy.

Figure 2.5.5 compares the direct and the indirect effect. In this graph, we display the average of the mortgages rates and offered rates in the benchmark economy (solid and dashed green lines, respectively). We also present the results from Section 2.5.4, which are the average of the mortgages rates and offered rates in the counterfactual economy without search costs (solid and dashed red lines, respectively). The blue line represents the average mortgage rates on outstanding loans when we remove the search costs. Since refinancing costs decline for borrowers, it is more likely that they will choose to refinance. As a result, the average mortgage rates on outstanding loans decline. The black line represents the average mortgage rates when we remove the indirect market power effect. In this alternative economy the offered rates that borrowers choose interest rate from is exactly equal the one in the economy without search costs (dashed red line). As we can see in Figure 2.5.5, interest rates on outstanding mortgage rates are significantly lower in the economy without the indirect effect compared to the one without the direct effect. Thus, the answer to the second question of the paper is that the indirect market power effect dominates the direct effect of search costs.

To understand the direct effect, we provide an example here. We estimate that the marginal search cost for the highest search cost borrowers is at least $1712 per inquiry. In addition, applications are assumed to always be accepted. Based on our estimation results, these borrowers always receive one inquiry whenever they refinance a mortgage. One can imagine a mechanism that can evaluate the expected search costs for all borrowers and subsidize them the exact amount if they choose to refinance.
Figure 2.13: Direct versus Indirect Effect of Search Costs on Refinancing

Note: The graph details the direct versus indirect effect of search costs on refinancing. The solid lines are the average of the interest rates on outstanding mortgages. The dashed lines are the average of the offered rates. The green lines represent the benchmark model, and the red lines represent the alternative economy without search costs. We assume that the marginal search costs for all borrowers equal zero ($\kappa_c = 0 \ \forall c \in \{1, 2, ..., 5\}$). The blue line represents the mortgage rates on outstanding loans when we remove the direct effect, and the black line represents the economy when we remove the indirect market power effect.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

However, the search is still costly for borrowers. For high search cost borrowers, this means that the first inquiry is free, but they must still pay $1712 per inquiry if they want to search further. The mechanism directly encourages borrowers to refinance.

We assume that the offered rate distribution remains unchanged compared to the economy without such a subsidy. This means that borrowers are not going to change their search behavior. For example, the high search cost borrowers are not going to obtain the second inquiry. To understand the indirect effect, the same environment can be assumed with a different mechanism. Borrowers must pay for their expected search costs before refinancing; however, the search cost per inquiry becomes free when they enter the refinance market. This policy removes search friction, and loan
originators lose their power to offer rates higher than the lowest possible rate. This policy encourages indirectly refinancing while the direct effect remains a barrier. Our paper finds that the second mechanism is significantly more effective in increasing refinancing. Knowing this is important because it would enable policy makers to evaluate which policies, mortgage designs or market designs might be most effective in reducing search friction and, consequently, inactivity in refinancing. In the next Section, we propose a market design that under specific assumption can eliminate the indirect effect of search costs while the direct effect remains in place.

2.6 A Centralized Refinance Market

In this section, we use our model to study a counterfactual in which borrowers can refinance their mortgages through a centralized origination market. Loan origination currently occurs in a decentralized market where borrowers contact loan originators to refinance. We impose specific assumptions to study this counterfactual. We assume that loan origination can only be done through this centralized market. In this centralized platform, markets are defined based on LTV ratios, terms and FICO Scores \((j, \theta)\). Loan originators post interest rates to markets \((j, \theta, t)\) every quarter, and we assume that a Bertrand competition exists among the loan originators when they post interest rates to the centralized market. Borrowers (with type \(\theta\)) observe only one interest rate for \((j, \theta, t)\), and they can lock in the posted rate by choosing to refinance to contract \(j\). We assume that refinancing is still costly for borrowers. They pay for the switching costs in full, and they also pay a search cost equal to number of inquiries until they get approved. We assume that the search cost is \(\frac{\kappa_c}{\lambda_j\theta_c}\). In this alternative economy, the offered rates will be equal to the minimum range of the offered rates due to Bertrand competition.
Figure 2.14: A Centralized Refinance Market

Note: The solid lines are the average of the interest rates on outstanding mortgages. The dashed lines are the average of the offered rates. The green lines represent the benchmark model, and the red lines represent the alternative economy without search costs. We assume that marginal search costs for all borrowers are equal to zero ($\kappa_c = 0 \ \forall c \in \{1, 2, \ldots, 5\}$) in the economy with no search costs. The black line represents an alternative economy in which refinance occurs in a centralized market.

Data Source: Equifax Credit Risk Insight Servicing and Black Knight McDash.

Figure 2.6 presents the results for this centralized market. The red dashed line represents the offered rates for the economy without search costs. In the centralized market, the offered rates are equal to the offered rates in the economy without search costs. The black line represents the average of the mortgage rates on outstanding loans in the centralized market. There is a significant reduction in the rates in this alternative economy. However, there is still a gap between the outstanding mortgage rates (solid black line) and the offered rate (dashed red line). This gap forms because the switching costs and search costs inhibit refinancing activities.

This counterfactual experiment highlights the importance of the result of the paper, which is that search friction inhibits refinancing activities mostly through the market
power of the loan originators, not directly through refinancing costs. In this counterfactual economy, the market power of the loan originators is eliminated; however, we still assume that the refinancing costs are mostly in place.

2.7 Conclusion

In this paper, we highlight the evidence on search friction and inactivity in refinancing in the US mortgage market. We bridge these two pieces of evidence to explore the role of search costs in explaining refinancing inaction. We empirically demonstrate that search costs significantly inhibit refinancing. We explore two channels through which search costs affect refinancing: the direct effect and the indirect market power effect. We find that the indirect market power effect dominates the direct effect. This result indicates that the main reason that search costs inhibit refinancing is NOT that getting only one quote to refinance is a very costly action for the borrowers. The main issue is that if borrowers get only one quote, the loan originators take into account that borrowers do not get multiple quotes to find the lowest rates, thus, they respond accordingly by offering high interest rates. This indirect effect weakens the benefit of refinancing for borrowers and this is the main channel that we find search costs inhibit refinancing. This is the main result of this paper.

To understand the main result, we explored an alternative economy in which the current decentralized system is replaced by a centralized market for refinancing. In this centralized market, borrowers observe only one price at each point in time. Loan originators post interest rates in the centralized market and we assume that there is Bertrand competition among them. We find that a centralized market for refinancing can significantly increase refinancing activity by eliminating market power, even if the refinancing costs remain unchanged.
The results of this paper raise the question of which policies, mortgage designs or market designs might be most effective in reducing the indirect market power effect of search friction and, consequently, decreasing inactivity in refinancing.
Chapter 3

Effect of Coalition Governments on Public Investment Cycles

The patterns seen in public investment during an election cycle are generally referred to as public investment cycles. It has been observed at the general government level that public investment as a fraction of the GDP decreases close to an election and public consumption as a fraction of the GDP increases. There have been many empirical studies that establish the existence of such public investment cycles throughout the world. Starting from Rogoff (1990), several papers have rationalized this behavior mainly as a competency signaling mechanism of the incumbent in the wake of voters who are imperfectly informed about public investment.

All these studies suggest that public investment is a decreasing function of time during an election cycle. But, Gupta et al. (2016) find that public investment during an election cycle initially increases, reaches a peak at around two years before the election and then falls. Thus, public investment is a concave function during an election cycle. Without this non-monotonicity, public investment to GDP would grow 12% faster three years before a typical election and 4% faster on average during
a typical election cycle.

What could be driving this fall in public investment much before an election? Why does it rise as we get closer to the election? The eventual fall in public investment is explained by existing theory as mentioned above. If a single political party cannot form the government by itself, it has to team up with other political parties to stake claim to form the government. Such a government is called a coalition government. The existence of multiple agents with different objectives in a government can potentially lead to interactions that result in different decisions as compared to a single-agent government. I define the share of coalition partners in the government as the fraction of government seats in the legislature that do not belong to the biggest party in the government. I find that the share of coalition partners in government has a significant impact on the public investment in an election cycle. As the share of coalition partners increases, the fall in public investment after an election is higher. The peak investment is also lower in a higher coalition share government. A government perceived to be more corrupt is also found to invest less and consume more.

I propose a model of endogenous elections where two parties share a legislative house and may need the support of each other to form a government. The party with the larger share decides the allocation of public revenue into current expenditure and public investment. If the larger party does not have enough share to form a government on its own, it gets the support of the other party to form the government. The amount of share needed by the larger party thus indicates the bargaining power of the supporting party in the government. The supporting party has the power to call an early election probabilistically. This probability depends on its ability and its willingness to call an election. Its ability depends on its bargaining power in the government and its willingness depends on its values with and without an election.
In brief, the other components of the model are as follows. As in the signaling models, voters can observe public consumption and public capital, but not public investment. Abstracting from the tax system, public revenue is an increasing function of the public capital with diminishing returns. A fraction of the public investment is diverted away and privately consumed by the party/parties in government in the ratio of their respective bargaining power. Higher the fraction diverted, higher is the principal-agent problem. Public investment subject to a productivity shock is the next period’s public capital. Voters, unable to observe the fraction diverted and the productivity shock, make rational inferences and vote to elect a government with a low principal-agent problem.

This model generates non-monotonic public investment cycles when the chance of an early election is high. Incumbent invests less during an election if it expects that its future private benefit is not going to be as high as it is currently. This is the case even with a high belief if the incumbent’s benefit of a high belief is restricted by the persistence of share in the house and the likelihood of type-switching of the government. Analogously, as an election gets closer, the incumbent invests less and less if the chance of an early election is low. But when the chance of an early election is high, the incumbent tries to reduce this chance by investing less. This reduces the difference in values with and without an election thus reducing the willingness of the coalition partner to call an election. As the scheduled election gets closer, the chance of an early election falls and so the investment increases. This along with the lower election period investment gives rise to a non-monotonic public investment cycle.

In all the cases, a leading party with a higher bargaining power invests more as it gets a higher share of the private benefit. A government perceived to be less corrupt does more investment but this increase is lower for an already strong government which has less to gain from the good perception. This is in contrast to the observed data.
where the increase is higher for a strong government. This can be reconciled in future work by assigning the allocation decision-making power to the coalition partner if its bargaining power is high.

A numerical example with reasonable parameters confirms the mechanism described. Simulated data from this economy confirms the non-monotonicity of the public investment cycle. The non-monotonicity in behavior as well as in the simulated data is lost with an exogenous early election probability. Also, the non-monotonicity in the simulated data is enhanced because the perception about the government also shows a similar non-monotonicity. This is because the good type government survives the term more often than the bad type government and thus the average belief is the highest midway through the election cycle. But, it is confirmed that this is not the only driver of the non-monotonic public investment cycle.

In contrast to the models of political competition like Alesina and Tabellini (1990), this paper has endogenous early elections which are critical to generate the non-monotonic public investment cycle under investigation. Chatterjee and Eyigungor (2019) studies endogenous political turnover and its effect on sovereign debt. They endogenize the outcome of an election but not the process of calling an election itself as in this paper. Similar to Alesina and Tabellini (1990), here the incumbent raises the spending on its preferred good if the chances of losing power are high or if the polarization is high. But here, the preferred good of the incumbent changes according to the strength of the government.

By varying appropriate components of the model, the model successfully generates varying trends in public investment cycles consistent with those observed in different democratic systems. The major classifications among democratic systems are on the lines of the voting systems (plurality and proportional) and on the lines of the government systems (presidential or parliamentary). The winner-takes-all systems:
plurality and presidential, on average exhibit stronger governments and a higher public investment to public consumption ratios. Thus, these systems seem to fare better in reducing political distortions to public investment. Public investment has been found to have a positive impact on aggregate productivity and output growth in the literature. Thus, these winner-takes-all systems appear to be better for an economy’s growth. Hence, in future work, it would be interesting to calibrate the model for different democratic systems and find the cost and benefit of moving from one system to the other.

3.1 Related Literature

There have been many empirical studies saying that public investment as a fraction of the GDP decreases close to an election throughout the world. Schuknecht (2000) finds the existence of such public investment cycles in 24 developing countries during the period of 1973-1992. Block (2001) establishes such public investment cycles in 69 developing countries during the period of 1975-1990. Vergne (2009) finds the same public investment cycles in a panel of 42 developing countries from 1975-2001. Establishing that this is not only a developing country phenomenon, Katsimi and Sarantides (2012) find that such public investment cycle existed even in 19 high-income OECD countries during the period of 1972-1999. Except Block (2001), these studies include both parliamentary and presidential systems and the results do not depend on the existence of one system or the other.

Rogoff (1990) was the first model to explain such changes in the composition of public spending. The model comprises of fully rational but imperfectly informed voters. They can see the current expenditures but cannot see the public investment and the
competence of the policymaker. Thus, close to an election, a competent policymaker reduces public investment and raises current expenditures to signal its competence. This leads to lower public investment before an election. Shi and Svensson (2006) find that this effect is larger and more robust in developing countries than in developed countries and propose a moral hazard model where the fraction of informed voters is smaller in developing countries thus leading to a stronger distortion in the spending allocation than in developed countries. Drazen and Eslava (2010) propose a model where the incumbent targets voters by manipulating spending to signal that its preferences are closer to those of the voters.

In contrast to existing literature, Gupta et al. (2016) find that public investment during an election cycle initially increases, reaches a peak at around two years before the election and then falls. Thus, public investment is a concave function of the time to election. I find that this concavity is exacerbated in the presence of coalition governments and this motivates the paper.

The setup is partly based on models of redistributive conflict and political turnover like those in Alesina and Tabellini (1990) and Persson and Svensson (1989). In Alesina and Tabellini (1990), there are two constituencies of voters who prefer a different public good and two parties who maximize the utility of one of the constituencies. The parties in power alternate randomly. They find that the government accumulates more debt and spends it on its preferred good if the polarization is higher and if the chance of losing power is higher.

There is a growing quantitative-theoretical literature based on these models which connects politics and the risk of sovereign default in a bid to reconcile the low discount factor attributed to the sovereign in the sovereign default literature. In this literature, Chatterjee and Eyigungor (2019) is the first to endogenize the fluctuations in the outcome of an election. But there is no model that endogenizes the process of calling
an election itself as this paper does.

Public investment has been found to have a positive impact on aggregate productivity and output growth in literature by many, like in a 39 developing country analysis by Gupta et al. (2005), in Mexico by Ramirez (1998) or in the US by Aschauer (1989) and Munnell et al. (1990). I find that political compulsions in coalition governments lead to suboptimal public investment. Thus weak governments likely to lose power hinder a country’s growth potential. Hence, it is important to study the effect of coalition governments on public investment in an effort to reduce the distortions caused by them.

3.2 Data

This study uses data similar to that used by Gupta et al. (2016) and adds on to it. New finding about how the share of coalition partners in the government and the perception of corruption in the government affect the public investment of the government motivates the model.

3.2.1 Sources

This data is from 80 countries around the world for the period 1975 to 2012. The focus is on national executive/legislative elections and fiscal variables around and during those elections. World Economic Outlook (WEO) provides the data for fiscal variables like total government expenditure, current spending and interest payments at the general government level. To maximize data availability, data on public gross
fixed capital formation is taken from the WEO, World Development Indicators and Haver Analytics. A number of socioeconomic variables that can affect the political cycle as well as the investment decisions are used as controls in the analysis like real GDP growth, real GDP per capita and debt-to-GDP ratio. These variables are also available in the WEO.

Political variables were collected to study their effect on public investment dynamics. Earlier studies have used a dummy variable to indicate an election year. But to better capture the data during the election cycle, I use a variable “months to election” which measures the months remaining to the next election. For example, if there was an election held in November 2012, this variable would take the value 11 in 2012, 23 in 2011 and so on. The month and year of election is collected from the Database of Political Institutions (DPI) which is compiled by the Development Research Group of the World Bank. To better capture the decisions of current governments, data only up to 36 months before an election are included. For parliamentary systems, legislative election dates are used whereas for presidential systems, executive election dates are used. In addition to this, I also add a new variable called “coalition share” which is the fraction of government seats in the legislative house that are not of the biggest party in the government. This is found in the DPI. Corruption Perception Index of Transparency International is also incorporated into the data. This is a number from 0 to 100 where a lower number indicates a higher corruption perception. Summary statistics of the variables is shown in Table 3.1.

3.2.2 Impact of Coalition Share on Public Investment

I find that the share of the coalition partners in government has a significant impact on the public investment during an election cycle. Below, I describe how I reach this
Table 3.1: Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>$% \Delta \frac{PI}{Y}$</td>
<td>1051</td>
<td>-3.094</td>
<td>33.154</td>
<td>-852.51</td>
<td>45.305</td>
</tr>
<tr>
<td>$\frac{PI}{Y}$</td>
<td>1051</td>
<td>5.515</td>
<td>5.255</td>
<td>0.527</td>
<td>67.404</td>
</tr>
<tr>
<td>$% \Delta Y$</td>
<td>1051</td>
<td>3.478</td>
<td>3.723</td>
<td>-14.098</td>
<td>23.419</td>
</tr>
<tr>
<td>$\frac{Debt}{Y}$</td>
<td>737</td>
<td>55.438</td>
<td>33.195</td>
<td>3.889</td>
<td>210.247</td>
</tr>
<tr>
<td>coalition share</td>
<td>1083</td>
<td>0.168</td>
<td>0.233</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>$% \Delta \text{Corruption Index}$</td>
<td>573</td>
<td>-0.172</td>
<td>7.78</td>
<td>-65.853</td>
<td>27.027</td>
</tr>
<tr>
<td>months before election</td>
<td>1114</td>
<td>18.502</td>
<td>10.266</td>
<td>1</td>
<td>36</td>
</tr>
</tbody>
</table>

Regression Model

Gupta et al. (2016) show that percentage change in public investment to GDP is a concave function of the months to election. This dependent variable better captures the dynamic behavior rather than levels. The results are robust to the use of levels. I perform a similar analysis and confirm their finding. In addition, I also add the variable “coalition share” and its interaction with “months to election” to the regression model. Then, I also add the percentage change in the corruption index and its interaction with the coalition share variable to the model.

In particular, I analyze a dynamic fixed effects model on this panel data with country fixed effects. The model is as below:

$$% \Delta \frac{PI_{i,t}}{Y_{i,t}} = \alpha_0 + \alpha_1% \Delta \frac{PI_{i,t-1}}{Y_{i,t-1}} + \beta X_{i,t} + \delta Z_{i,t-1} + \mu_i + \epsilon_{i,t}$$

where $\frac{PI_{i,t}}{Y_{i,t}}$ is public investment to GDP ratio in country i in year t. $X_{i,t}$ is the vector of political variables of interest like months to election, months to election squared, coalition share, months to election times coalition share, percentage change
in corruption index and its product with the coalition share. \(Z_{i,t-1}\) is the vector of control variables like lagged public investment to GDP, lagged percentage change in real GDP, lagged debt-to-GDP, \(\mu_i\) is country-specific fixed effects and \(\epsilon_{i,t}\) is the error term. A time dummy is added to deal with any common time trend across countries which might affect the months to election variable.

Percentage change in public investment to GDP is used so that the dynamic behavior of the variable does not depend on the level of public investment. Public investment dynamics might display a lot of persistence. Hence, the lagged dependent variable is included as a regressor. This warrants a unit root test in the data. Table 3.2 reports the results which show that the null-hypothesis of non-stationarity can be rejected at 1 percent significance level. Macroeconomic variables relevant to the study are used in the model at a one period lag to avoid reverse causality. Table 3.3 summarizes the findings of this analysis. The second column reports the findings in the baseline model without any political variables. Column 3 reports the effect of adding “coalition share” and its interaction with “months to election”. Column 4 reports the effect of adding the percentage change in corruption perception index and its interaction with the coalition share.

Results

In each of the regression models, the dependent variable is a non-monotonic concave function of time during an election cycle. It increases initially during the election cycle, reaches its peak around two years before the election and then starts decreasing again till the election as shown in Figure 3.1. This is unlike what any model explaining public investment would say. If the coefficient on the “months to election squared” variable would have been insignificant, the data would have indicated that
the dependent variable is monotonically decreasing in the election cycle and that its estimated value would have been higher by 4 units on average and higher by 12 units at 36 months before an election. Thus, this non-monotonicity is not trivial and should be studied.

The distortions due to coalition governments are greater earlier in the election cycle. From the second regression model, it is seen that for any period during an election cycle, a higher coalition share reduces the dependent variable and that more the months to an election, higher is the reduction in the dependent variable. An additional coalition share of 1% reduces the dependent variable by 0.004 when there is one month left for an election whereas it reduces the dependent variable by 0.144 when there are three years left for an election. Thus the non-monotonicity in the public investment during an election cycle in exacerbated by increasing coalition share in the government as seen in Figure 3.1.

A perception of being less corrupt reduces the distortions due to coalition governments, more so when the coalition share is small. In the third regression model, it is seen that a reduction in the corruption perception leads to an increase in the dependent variable and that a higher coalition share dampens this increase in the dependent variable. A 1% increase in the index, i.e., reduction in the corruption perception leads to a increase of 0.328 in the dependent variable if there is no coalition but a coalition share of just 1% reduces this increase to 0.317.

Thus, coalition governments affect the fiscal decision-making of the government and this effect is influenced by how corrupt the government is perceived to be. I use this finding to build a mechanism to explain the non-monotonicity in public investment cycle observed in the data.
Table 3.2: Fisher-type Panel Unit Root Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$% \Delta PI/Y$</td>
<td>520.37</td>
<td>0.00</td>
</tr>
<tr>
<td>PI/Y</td>
<td>375.69</td>
<td>0.00</td>
</tr>
<tr>
<td>$% \Delta Y$</td>
<td>384.78</td>
<td>0.00</td>
</tr>
<tr>
<td>Debt</td>
<td>226.07</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 3.3: Impact of Election Cycles, Coalition Share and Corruption Perception

<table>
<thead>
<tr>
<th>Dependent variable: $% \Delta PI/GDP$</th>
<th>Baseline</th>
<th>Coalition Share</th>
<th>Corruption Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>$% \Delta Corruption Index$</td>
<td>0.328*** [0.1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$% \Delta Corruption Index \times \text{coalition share}$</td>
<td>-0.895** [0.33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Months before election $\times \text{coalition share}$</td>
<td>-0.399** [0.16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coalition share</td>
<td>6.555</td>
<td>6.016</td>
<td></td>
</tr>
<tr>
<td>Months before election</td>
<td>0.431* [0.22]</td>
<td>0.529** [0.22]</td>
<td>0.499** [0.22]</td>
</tr>
<tr>
<td>Months before election2</td>
<td>-0.009* [0.005]</td>
<td>-0.010* [0.005]</td>
<td>-0.009* [0.005]</td>
</tr>
<tr>
<td>L. Dependent variable</td>
<td>-0.037 [0.047]</td>
<td>-0.026 [0.05]</td>
<td>-0.041 [0.08]</td>
</tr>
<tr>
<td>L. PI/GDP</td>
<td>-0.776** [0.29]</td>
<td>-0.935** [0.42]</td>
<td>-3.495** [0.94]</td>
</tr>
<tr>
<td>L. $% \Delta RGDP$</td>
<td>0.659*** [0.23]</td>
<td>0.667*** [0.23]</td>
<td>0.674*** [0.21]</td>
</tr>
<tr>
<td>L. Debt/GDP</td>
<td>-0.126* [0.07]</td>
<td>-0.120* [0.07]</td>
<td>-0.062 [0.06]</td>
</tr>
<tr>
<td>R^2</td>
<td>0.059</td>
<td>0.063</td>
<td>0.1018</td>
</tr>
<tr>
<td>Countries</td>
<td>67</td>
<td>67</td>
<td>63</td>
</tr>
<tr>
<td>Observations</td>
<td>708</td>
<td>698</td>
<td>518</td>
</tr>
</tbody>
</table>

Standard errors in brackets.
* p<0.1, ** p<0.05, *** p<0.01
Figure 3.1: \(\% \Delta \text{PI}/\text{GDP}\) during an election cycle with different coalition shares

<table>
<thead>
<tr>
<th>Variable</th>
<th>Plurality</th>
<th></th>
<th></th>
<th>Proportional</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\text{PI}}{\text{PC}})</td>
<td>688</td>
<td>41.34</td>
<td>30.27</td>
<td>394</td>
<td>31.11</td>
<td>27.5</td>
</tr>
<tr>
<td>coalition share</td>
<td>678</td>
<td>0.12</td>
<td>0.203</td>
<td>393</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Table 3.4: Summary Statistics Across Voting Systems

3.2.3 Variations across Democratic Systems

The effects of coalition governments on fiscal decision-making in winner-takes-all systems, plurality and presidential, seem to be lower. The coalition share in governments in the plurality and presidential systems are smaller than in proportional and parliamentary systems respectively. They also have a higher public investment to public consumption ratio. This is shown in Tables 3.4 and 3.5. Also, early elections are very rare in presidential systems (4% of the 113 elections) as against parliamentary systems (31% of the 278 elections).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Presidential</th>
<th></th>
<th></th>
<th>Parliamentary</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\text{PI}}{\text{PC}})</td>
<td>336</td>
<td>48.12</td>
<td>29.52</td>
<td>777</td>
<td>34.75</td>
<td>32.54</td>
</tr>
<tr>
<td>coalition share</td>
<td>326</td>
<td>0.11</td>
<td>0.21</td>
<td>757</td>
<td>0.19</td>
<td>0.239</td>
</tr>
</tbody>
</table>

Table 3.5: Summary Statistics Across Government Systems
3.3 Model

I model a political economy in which governments can be weak or strong and this changes how they allocate their resources into consumption and investment. The economy is a discrete time infinite period economy where time is denoted as $t = 0, 1, 2, 3,...$. The economy is populated by a representative individual who is the voter and two political parties who alternate in power. All of them live forever.

3.3.1 Government

Each period, there is a government in place which has a type and a budget based on the public capital.

Type

The government can be one of two types: a good government represented by the number λ_g and a bad government represented by the number λ_b. These numbers indicate the amount of private benefit that the parties in government enjoy per unit of public investment. So, $0 \leq \lambda_g < \lambda_b$. If $\lambda_g = 0$, the good government is benevolent.

A good government does not stay good forever and a bad government does not stay bad forever. This could be because of change of leadership within the party. Hence, I assume that the type of the government may change each period with some switching probability $\alpha \in [0, 1]$. Thus, the matrix denoting the transition of types is given by
When a new government is formed, its type is drawn from the stationary distribution of this transition matrix which is \([\frac{1}{2}, \frac{1}{2}]\).

Budget

Government earns its revenues by taxing its citizens. If the government provides a better infrastructure, productivity of people is enhanced and thus they earn more and in return, pay more taxes. The direct relationship between public investment and aggregate productivity and output growth has been well-documented in the literature as mentioned earlier.

Hence, to simplify the model, I abstract away from taxation and assume that government’s revenues depend on the public capital available. In particular, government’s revenue is given by

\[y_t = Ak_t^a \]

where \(A > 0\) is a constant total factor productivity parameter and \(a \in (0, 1)\) is the output elasticity of the public capital \(k_t\) used to produce the revenue \(y_t\) at time \(t\).

The government uses its revenue for public consumption spending and for total observed public investment spending. Thus, the government budget constraint is
\[c_t + i_t (1 + \lambda_t) = Ak_t^a \]

where \(c_t \) is the public consumption spending at time \(t \), \(i_t \) is the public investment spending at time \(t \) and \(\lambda_t \) is the government type at time \(t \). The total public investment spending as observed by the citizens is \(i_t (1 + \lambda_t) \) out of which \(i_t \) is the actual investment and \(i_t \lambda_t \) is privately consumed by the party/parties in the government.

Capital Formation

The transformation of the actual public investment into the next period’s public capital is subject to a productivity shock. In particular,

\[k_{t+1} = i_t \epsilon_{t+1} \]

where \(\epsilon_{t+1} \) is a normally distributed i.i.d. shock with mean 1 and standard deviation \(\sigma_\epsilon \).

3.3.2 Political parties

The economy has two political parties, \(L \) and \(R \) who live forever.
Government Formation

The parties share a House of representatives which is denoted by the interval $[0, 1]$. Any party who claims to form a government needs $\Omega > \frac{1}{2}$ share of the House. Thus, if neither party has a share at least Ω, they need the support of the other party to form a government. Such a government is called a coalition government. I will assume that the party with the larger share after an election claims to form a government which may be a coalition government if required. If both parties have equal share, I assume without loss of generality that L claims to form the government.

A number $\omega_t \in [0, 1]$ determines the share of L at time t and the share of R is $1 - \omega_t$. Based on this share, the leading party, let us call it p_t, and the coalition partner, if present are determined as follows:

<table>
<thead>
<tr>
<th>Leading Party p_t</th>
<th>Coalition Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_t \in [0, 1 - \Omega]$</td>
<td>R</td>
</tr>
<tr>
<td>$\omega_t \in (1 - \Omega, 0.5)$</td>
<td>R</td>
</tr>
<tr>
<td>$\omega_t \in [0.5, \Omega)$</td>
<td>L</td>
</tr>
<tr>
<td>$\omega_t \in [\Omega, 1]$</td>
<td>L</td>
</tr>
</tbody>
</table>

In what follows, I will use $\neg p_t$ to denote the party which is not the leading party, which may or may not be the coalition partner.

Decision Making

The leading party decides allocation of public resources. There is a chance that early election might be called by the coalition partner, if a coalition government exists. In a coalition government, the amount of the share in the House by which the leading party fell short and required the support of the coalition partner determines the bargaining
power of the coalition partner. This bargaining power determines the ability of the coalition partner to call an early election.

The value of the coalition partner with an early election and without an early election determines the willingness of the coalition partner to call an early election. The probability of an early election is a product of the coalition partner’s ability and willingness to call it.

Bargaining Power

I define the bargaining power of the leading party in the government p_t as

$$s(\omega_t) = \begin{cases}
1 & \omega_t \in [\Omega, 1] \text{ or } \omega_t \in [0, 1 - \Omega] \\
\frac{\omega_t}{\Omega_t} & \omega_t \in [0.5, \Omega) \\
\frac{1-\omega_t}{0.5} & \omega_t \in (1 - \Omega, 0.5)
\end{cases}$$

Then the bargaining power of the other party $p \neg t$ is $1 - s(\omega_t)$.

Utility

The political parties are representative agents who enjoy private benefit when in the government. Thus, they discount the future at the same rate as representative agents, i.e., $\beta \in (0, 1)$. Being representative agents, each party enjoys public consumption expenditure. In addition to that they also enjoy the private benefit of being in government which is shared among the two parties in the ratio of their bargaining power in the government.
Thus, the period utility of the leading party p_t is

$$
U^{p_t}(\omega_t, \lambda_t, c_t, i_t) := u(c_t) + \psi u(s(\omega_t)i_t\lambda_t)
$$

where ψ is the ratio of the utility derived from a unit of private benefit to the utility derived from a unit of public consumption, and the utility function is

$$
u(x) = \frac{x^{1-\sigma}}{1 - \sigma}
$$

where $\sigma \in (0, 1)$ is the constant relative risk aversion coefficient. The period utility of the other party $\neg p_t$ is

$$
U^{\neg p_t}(\omega_t, \lambda_t, c_t, i_t) := u(c_t) + \psi u((1 - s(\omega_t))i_t\lambda_t)
$$

A higher ψ indicates that a political party’s affinity for private benefit over current consumption is higher and thus it likes staying in power even more.

3.3.3 Voters

Imperfectly informed rational representative agents are the voters in this economy who always want to elect a good type of government.
Utility

A risk-averse representative agent derives utility out of current expenditure of the government. If the public consumption sequence is denoted by \(\{c_t\}_{t=0}^{\infty} \), the lifetime utility of the representative agent is given by:

\[
\sum_{t=0}^{\infty} \beta^t u(c_t)
\]

where the discount factor and the utility function are as defined above.

Information

The voters can observe public consumption and public capital, but not public investment. Public consumption is made up of items like wages, salaries, transfers etc. which are immediately and transparently visible to the people. But public investment is made up of expenditures to build public capital like roads, bridges, buildings etc. This public capital is not built immediately after the expense is made. Also, how exactly the public investment made translates to the public capital built later is not transparently visible to the people; it is especially not as transparent as the public consumption. So, it is easier for a non-benevolent government (agent), who is in-charge of making the allocation decision on behalf of the people (principal) to privately benefit from the public investment than from public consumption. The public capital built may be lower than expected either due to the private benefit of the government or due to unforeseen productivity shock to the investment.

Thus, the voters can observe the public capital \(k_t \) and so can observe the public revenue \(y_t \). They can also observe public consumption \(c_t \) and the total public investment
\(i_t(1 + \lambda_t)\), but they cannot observe the actual investment \(i_t\) and the government type \(\lambda_t\). Next period, they cannot observe the productivity shock \(\epsilon_{t+1}\) but they can observe \(k_{t+1}\) which is \(i_t\epsilon_{t+1}\) and make an inference about the type of the government.

Belief Updates

Although they do not know the type of the current government, the citizens know the optimal decisions of both the types in every state of the world. Thus, in the current state, if the two types choose different public consumption, i.e., \(\hat{c}_g \neq \hat{c}_b\) where the hats indicate the optimal decisions of the two respective types, the type of the government is revealed. If they choose the same public consumption, voters cannot draw any inference based on this observation. The total public investment chosen by the two types is also the same, i.e., \(\hat{i}_g(1 + \lambda_g) = \hat{i}_b(1 + \lambda_b)\) as they have the same budget. So, the voters cannot draw any inference from this either.

In this case, they do not know if the observed next period capital \(k_{t+1}\) is \(\hat{i}_g\epsilon_g\) or it is \(\hat{i}_b\epsilon_b\), where \(\epsilon_j\) indicates the productivity shock that would have occurred if the government type was \(\lambda_j\) and thus the actual public investment was \(\hat{i}_j\) for \(j \in \{g, b\}\). Voters update their belief based on the likelihood of these shocks.

If at the start of the period \(t\), the belief of the voters that the current government is of good type is \(\theta_t\), then as described above they update their belief as below:

\[
\hat{\theta}_t = \begin{cases}
\theta_t & \text{if } \hat{c}_g = \hat{c}_b \\
1 & \text{if } c_t = \hat{c}_g \neq \hat{c}_b \\
0 & \text{if } c_t = \hat{c}_b \neq \hat{c}_g
\end{cases}
\]
\begin{equation} \label{3.3.1}
\hat{\theta}_t = \frac{\hat{\theta}_t \phi(\epsilon_g)}{\hat{\theta}_t \phi(\epsilon_g) + (1 - \hat{\theta}_t) \phi(\epsilon_b)}
\end{equation}

where \(\phi(.) \) is the distribution function of \(\epsilon_{t+1} \) mentioned before.

3.3.4 Elections

An election is scheduled every third period. The voter attaches the type of the government to the leading party in the government. So, an election decides the new share of the leading party in the House. If this new share is such that the leading party continues to be the leading party, I say that the government is reelected. Otherwise, if the new share of the leading party is such that it is no longer the leading party, I say that the government is replaced. If the government is reelected, its type is drawn in a persistent manner. If the government is replaced, the type of the new government is drawn from the steady state distribution of the types.

So, voters decide the new share of the parties in the House based on their belief whether the current government is of good type and whether if the current government is replaced, the new government will be of good type. At the time of voting, the belief of the voter is \(\hat{\theta}_t \) specified above. If \(\theta^* \) is the probability that the new government would be of the good type, then the voter would vote for the current government based purely on belief with probability:

\[
\eta_t = 1.\hat{\theta}_t(1 - \theta^*) + \frac{1}{2}\hat{\theta}_t\theta^* + \frac{1}{2}(1 - \hat{\theta}_t)(1 - \theta^*) + 0.(1 - \hat{\theta}_t)\theta^*
\]

where the first term on the right hand side states that the voter definitely votes for
the current government if it believes the current government is good and the new
government will be bad, the second term states that there is a 50% chance that the
voter votes for the current government if it believes the current government is good
and the new government will also be good, and so on. This simplifies to

\[\eta_t = \frac{1}{2} + \frac{\hat{\theta}_t - \theta^*}{2} \]

Voting is not just based on belief of the people about the type of the government
but also upon various other factors like their own political ideology which may be
persistent. To include this in the model, I make the share of the parties persistent
from election to election. So, the new share of the parties after an election at time \(t \)
becomes:

\[\omega_{t+1} = \rho \omega_t + (1 - \rho) \eta_t \quad \text{if } p_t = L \quad (3.3.2) \]

\[1 - \omega_{t+1} = \rho (1 - \omega_t) + (1 - \rho) \eta_t \quad \text{if } p_t = R \quad (3.3.3) \]

where \(\rho \in [0, 1] \) is the persistence of the share of the parties.

As mentioned earlier, an election is scheduled every third period. If a coalition gov-
ernment exists, an early election might be called in a period when an election is not
scheduled.
3.3.5 State Variables

In any period, the state of the world is completely described by the variables: publicly known time to scheduled election, say t, public capital k, share ω of party L in the House, belief θ of the voters that the current government is of good type and privately known actual type of the government λ. Let $S := (t, \theta, \lambda, \omega, k)$ be the set of state variables at any period.

3.3.6 Timing

The timing of events is as follows: at the start of the period, the leading party p chooses the allocation of public resources into public consumption, public investment and private benefit, voters update their belief after observing the public consumption; then it is determined whether there will be an election this period, either scheduled or unscheduled. Let $e \in \{0, 1\}$ denote whether there is an election in the current period. If $e = 1$, there is an election, else there is no election.

Then, the parties and the voters consume; the productivity shock to the actual public investment leads to the formation of the new public capital which is observed by the voters and beliefs are updated; election happens if it was determined that they will happen and the new shares are drawn; finally the new type of the government is drawn either in a persistent manner or from the stationary distribution and the belief is also updated accordingly. Figure 3.2 explains the timing of events.
State Updates

The timing of events determine how the states update. If the productivity shock received to the chosen investment i is ϵ, then the next period capital is $k' = i\epsilon$. If there is no election, i.e., $e = 0$, then $\omega' = \omega$ and $t' = t - 1$. If $e = 1$, then $t' = 2$ and ω' is updated according to equation 2 and 3.

If the leading party remains the same, i.e., if $\omega, \omega' \geq 0.5$ or $\omega, \omega' < 0.5$ then the next period type is drawn in a persistent manner and the belief is updated accordingly:

\[
\lambda' = \begin{cases}
\lambda & \text{with probability } 1 - \alpha \\
\neg\lambda & \text{with probability } \alpha
\end{cases}
\]

\[
\theta' = \hat{\theta}(1 - \alpha) + (1 - \hat{\theta})\alpha
\]

where $\hat{\theta}$ is the belief update according to equation 1. If the leading party changes, the new type is drawn from the stationary distribution and belief is updated accordingly:

\[
\lambda' = \begin{cases}
\lambda_g & \text{with probability } \theta^* \\
\lambda_b & \text{with probability } 1 - \theta^*
\end{cases}
\]
\[\theta^* = \theta^* \]

3.3.7 Value Functions

The value function of the leading party \(p \) can be written as:

\[
V^p(S) = \max_{c,i} U^p(\omega, \lambda, c, i) + \beta[\pi(S)E^1V^p(S') + (1 - \pi(S))E^0V^p(S')]
\]

s.t.

\[
c + i(1 + \lambda) = Ak^a
\]

\[
c(t, \theta, -\lambda, \omega, k), i(t, \theta, -\lambda, \omega, k) \text{ known}
\]

where \(\pi(S) \) is the probability of an election, \(E^1 \) is the expectation over the evolution of states in case of an election, \(E^0 \) is the expectation over the evolution of states in case of no election, \(-\lambda \) is the other type. The policy functions thus can be represented as \(c(S) \) and \(i(S) \). Then the value function of the other party is written as:

\[
V^{-p}(S) = U^{-p}(\omega, \lambda, c(S), i(S)) + \beta[\pi(S)E^1V^{-p}(S') + (1 - \pi(S))E^0V^{-p}(S')]
\]

The value of the other party with and without an election are respectively:
\[V^{-p,1}(S) = U^{-p}(\omega, \lambda, c(S), i(S)) + \beta E^{1}V^{-p}(S') \]
\[V^{-p,0}(S) = U^{-p}(\omega, \lambda, c(S), i(S)) + \beta E^{0}V^{-p}(S') \]

Probability of an Election

Let \(h(\omega) \) denote the ability of the coalition partner \(-p\) to call an early election. In particular, when \(\omega \in (1 - \Omega, \Omega) \),

\[h(\omega) = \frac{\Omega - s(\omega)}{\Omega - 0.5} \]

otherwise, it is 0. Then, the probability of an election is given by:

\[
\pi(S) = \begin{cases}
1 & \text{if } t = 0 \\
0 & \text{if } t > 0 \& \omega \notin (1 - \Omega, \Omega) \\
h(\omega) \frac{\exp(V^{-p,1}(S))}{\exp(V^{-p,1}(S)) + \exp(V^{-p,0}(S))} & \text{if } t > 0 \& \omega \in (1 - \Omega, \Omega)
\end{cases}
\]

Thus, an election can be a scheduled election, or if there is a coalition government, the probability of an early election is a product of the ability of the coalition partner to call it and its willingness to call it which is proportional to its value if an election happens and inversely proportional to its value if an election does not happen.
3.3.8 Markov Perfect Equilibrium

Let $S_j := (t, \theta, \lambda_j, \omega, k)$ denote the state where the government type is j, $j \in \{g, b\}$. Let $c_j := c(S_j)$ and $i_j := i(S_j)$ be the optimal decisions of each type of government. Then a Markov perfect equilibrium is defined as follows:

For each publicly visible state of the world, in particular, time to election t, belief θ, share ω and public capital k, the good type chooses c_g, i_g to maximize $V^p(S_g)$ given c_b, i_b and the bad type chooses c_b, i_b to maximize $V^p(S_b)$ given c_g, i_g and the budget constraint holds.

There can be equilibria where the good and bad type choose different consumption levels, i.e., $c_g \neq c_b$. Then the government type is revealed and the belief becomes extreme. This is not a very appealing case since it is not common that the government type is revealed. Bad type will always face an early election and good type will never face them. So, in this paper I will focus on the equilibria where the good and bad type choose the same consumption levels and thus their type is not revealed. For the existence of such equilibria, I will need that the two types are not very different from one another.

3.3.9 Analysis

Below, I look at the optimality conditions and analyze the implications of this model and the equilibrium.
School Choice with Party Competition

Optimality Conditions

In the equilibrium in which the two types choose the same consumption, it is the bad type that wants not to reveal itself and thus chooses $c_b = c_g$ and from the budget constraint, $i_b = i_g \frac{(1+\lambda_g)}{(1+\lambda_b)}$. Note that since $\lambda_g < \lambda_b$, $i_b < i_g$; the bad type always invests less than the good type. On the other hand, given that the bad type will choose the same consumption, the good type chooses i_g optimally.

The good type optimally equates the marginal cost of investment which is due to the lower consumption now to the marginal benefit of investment which includes

1. higher private benefit now and

2. higher capital next period which results in

 (a) higher consumption next period,

 (b) higher private benefit next period and

 (c) higher capital in the period after that.

If the leading party faces an election and loses its share in the government or loses power altogether, it gets a smaller share of the private benefit next period. Thus, it does not “like” an election as one component of the marginal benefit of investment reduces. Hence, the leading party would invest less now and consume more.

In particular, the first order condition of the good type’s problem is:
\[-U^p_i(\omega, \lambda, c, i) = \beta[\pi(S)E^1V^p_i(S') + (1 - \pi(S))E^0V^p_i(S') + \pi_i(S)(E^1V^p(S') - E^0V^p(S'))]\]

where the period marginal utility of investment is

\[U^p_i(\omega, \lambda, c, i) = -(1 + \lambda)u'(c) + \psi\lambda s(\omega)u'(i\lambda s(\omega))\]

and the marginal election probability of investment is

\[\pi_i(S) = \begin{cases}
\pi(S)(1 - \frac{\pi(S)}{h(\omega)})\beta(E^1V^p_i(S') - E^0V^p_i(S')) & \text{if } t > 0 \& \omega \in (1 - \Omega, \Omega) \\
0 & \text{otherwise}
\end{cases}\]

The first order condition equates the marginal cost of investment in the current period to the marginal benefit of investment in the future which depends on whether an election happens or not and also on the difference of values with and without an election times the marginal change in the probability of election with investment. This marginal change depends on the difference in marginal utility of investment for the coalition partner with and without an election.

Envelope condition cannot be directly substituted in to the right hand side of the first order condition. The envelope condition only applies to the party that is maximizing the problem. The other party’s marginal utility of the new capital has to consider the decisions of the larger party as given and thus consider the marginal changes in those decisions as well. Thus,
\[V_i^p(S') = \begin{cases} Aa(ie)^{a-1}u'(c(S')) & \omega, \omega' \geq 0.5 \text{ or } \\
\frac{\partial}{\partial i} \{U^p(\omega', \lambda', c(S'), i(S')) \\
+ \beta[\pi(S')E^1V^p(S'') + (1 - \pi(S'))E^0V^p(S'')]\} & \omega, \omega' < 0.5 \\
\end{cases} \]

which says that for the current leading party, the expression for its marginal utility of investment next period depends on whether that party continues to be the leading party. If yes, then envelope condition can be used. If not, the partials of the next period’s choices of the other party need to be considered too. Similarly, for the smaller party this period,

\[V_i^{-p}(S') = \begin{cases} \frac{\partial}{\partial i} \{U^{-p}(\omega', \lambda', c(S'), i(S')) \\
+ \beta[\pi(S')E^1V^{-p}(S'') + (1 - \pi(S'))E^0V^{-p}(S'')]\} & \omega, \omega' \geq 0.5 \text{ or } \\
Aa(ie)^{a-1}u'(c(S')) & \omega, \omega' < 0.5 \\
\end{cases} \]

Belief Updates

In the equilibrium under consideration, the belief updates do not depend on the actions of the parties. There is no update to the belief due to the observed consumption. The voters know \(i_g \) and \(i_b \) but they do not know which one was chosen by the government as they do not know the type of the government. The total public investment

139
observed by the voters is

\[Ak^a - c = i_g(1 + \lambda_g) = i_b(1 + \lambda_b) \]

and the next period capital observed is

\[k' = i_g \epsilon_g = i_b \epsilon_b \]

where \(\epsilon_g \) and \(\epsilon_b \) are the appropriate productivity shocks that convert \(i_g \) and \(i_b \) respectively to \(k' \). This implies

\[\frac{\epsilon_g}{1 + \lambda_g} = \frac{\epsilon_b}{1 + \lambda_b} \]

Thus, for any type \(j \in \{g, b\} \), given a shock \(\epsilon_j \) the corresponding shock \(\epsilon_{\neg j} \) of the other type \(\neg j \) is given by the above equation which is independent of any decisions.

The belief update after seeing \(k' \) depends only upon the current belief and the two shocks. So, the belief update does not depend on the actions of the parties.

In expectation, the belief updates stochastically revert to the stationary belief \(\theta^* \). Due to the switching of types each period, in expectation, a high belief does not stay high and a low belief does not stay low. This reversion to the mean is faster with a higher type switching probability \(\alpha \).

Effect of Belief on the Election Result

High persistence of the old share and high type switching probability make high belief less valuable and low belief less costly. The two parameters dampen the effect of the current belief on the election result, i.e., the new share in the House. The new share in the House is an increasing function of the current belief but it is a linear combination of the current share and a belief-based share. A high persistence \(\rho \) of
previous share in the House reduces the weight on the belief-based share. The type switching probability restricts the belief to the range \([\min\{\alpha, 1 - \alpha\}, \max\{\alpha, 1 - \alpha\}]\). This range restricts the maximum share attainable in the House. A higher switching probability also results in faster expected mean reversion of the belief. Also, the belief-based share is a function of the deviation of the current belief from the stationary belief \(\theta^*\) which dampens the effect further.

Belief and Investment

All governments increase their investment with belief and this increase is higher for weaker governments. A higher belief results in a better election result for the leading party. Thus, it enjoys a higher share of the future private benefit. Even if the election is not scheduled now, the belief is persistent and thus more valuable when the election happens in the future. Thus, the leading party invests more now if the belief is higher. If the share of the leading party in the House is already high, the marginal return of the high belief is lower than if the share was low. Thus, as the current share of the leading party in the House increases, the increase in investment with a higher belief is lower.

This is in contrast to what has been found in the data analysis. In the data, as the current share of the leading party increases, the increase in investment with a higher belief is higher. Extraneous to the model, a coalition partner with a high share might have a greater influence in the public investment decision-making itself and thus reduce the ability of the government to increase investment even if it is perceived to be less corrupt. In future work, to alleviate this, the allocation decision-making power could be assigned to either party in the government based on their bargaining power.
Scheduled Election Period Investment

All the governments invest less in a scheduled election period than in a non-scheduled election period if the affinity for power is high enough and the effect of belief on the election result is dampened enough. In such a case, the leading party will never “like” an election in expectation. This result can be explained by looking at the four cases below.

If the belief is low, the expected new share of the leading party is lower than its current share. In case its current share is also low, there is a good chance of losing power and becoming the smaller party. This results in a big fall in value if the parties like staying in power enough. Even if current share is high so that the chance of becoming the smaller party is low, the chance of losing share in the government is high which also results in a significant fall in value.

If the current share of the leading party is high and the belief is even higher, the expected new share of the leading party is higher than the current share. But this expected increase is small because of the dampening effect. On the other side, there is a chance of losing share if a bad productivity shock is realized. The risk-averse agents dislike this loss more than they like the small gain. They would rather prefer the certainty of the current share.

If the current share of the leading party is low and the belief is high, there is a good chance of gaining share. This case is the least likely one to have scheduled election period investment lower than non-scheduled election period investment. But the gain in share can be small if the dampening is high. On the other hand, even a slightly bad productivity shock can lead to a loss of power. If the parties strongly like staying in power, this can be very costly and can dominate the benefit of the expected better share.
Thus, in all cases, with a high dampening effect and high affinity for power, the leading party invests less in a scheduled election period than in other periods.

Non-Scheduled Election Period Investment

All the governments except those who are highly likely to lose power invest less as they get closer to a scheduled election if the affinity for power is high enough and the effect of belief on the election result is dampened enough. In all the cases, as the leading party does not “like” an election in expectation, being further away from an election is more valuable to it. It enjoys a higher private benefit for more number of periods. Thus, if other distortionary forces are small, the leading party invests less as it gets closer to a scheduled election.

The relevant distortionary force here is the endogenous chance of an early election in the presence of a coalition government. If there is no coalition, the leading party does not face any chance of an early election. Thus it invests less as it gets closer to an election. If there is a coalition, there is a chance of an early election. If the share of the leading party is high, the ability of the coalition partner to call an election is low. If the belief is high at the same time, its willingness to call an election is also low. If the belief is low, the expected gain in share for the coalition partner is small with enough dampening effect. So, its willingness is still not very high. As such, the chance of an early election is low. So, the leading party’s decisions are hardly affected by it and they invest less as they get closer to an election.

If the share of the leading party is low, the ability of the coalition partner to call an election is high. But if the belief is high, its willingness is low. So, the chance of an early election is low. So, investment is still falling as the economy gets closer to a scheduled election.

But if the belief is low as well, the willingness to call an election is high as the gain
for the smaller party by becoming the larger party is significantly high. In this case, the chance of an early election is high. The leading party tries to reduce this chance fearing loss of power. To reduce the chance of an election, the leading party allocates a higher amount into public consumption. This reduces the difference in the values with an election and without an election as the public consumption is enjoyed now irrespective of whether an early election takes place. Thus the willingness to call an election is reduced. Further away the scheduled election, higher is the willingness to call an election as the coalition partner would like to come to power as soon as possible. So, every marginal unit spent on consumption reduces the willingness more if the scheduled election is further away. Also, further away the scheduled election, higher is the incentive for the larger party to reduce the chance of an early election. Thus, the marginal return on reducing investment is higher when the economy is further away from a scheduled election. Thus, the leading party invests less the further away it is from a scheduled election. This along with the lower scheduled election-period investment gives rise to the non-monotonic trend in public investment during an election cycle.

Comparing to Alesina and Tabellini (1990)

Compared to Alesina and Tabellini (1990), this model endogenizes the election process and thus adds an extra channel of increased spending on the preferred good which happens in order to influence the coalition partner. Unlike that model, here the voters are identical but the parties are different as they enjoy different share of the private benefit. The alternation in power is based on beliefs and the incumbent not only influences the choice of the successor but also of the other party today, although probabilistically.

As in Alesina and Tabellini (1990), here the spending on the preferred good increases if polarization is high or if the chances of losing power are high, but the preferred
good itself changes according to the strength of the government. A strong government prefers investment and a weak government about to lose power prefers consumption. Polarization is the difference in how much the two parties like the two goods differently. In that sense, polarization is high either when the government is very strong or when the government is very weak. That is also the case when the spending on the preferred good of the leading party is high: strong government spends more on investment, weak government spends more on consumption. A weak government which can lose power if an election happens spends more on consumption also in an effort to avoid an early election.

3.4 Numerical Example

I solve a numerical example of the model above to exhibit the working of the mechanism described above. In future work, the model can be calibrated for different political systems and the transition costs from one system to the other could be looked at in an effort to move towards less distorting winner-takes-all systems.

3.4.1 Method

The parameters used are listed in Table 3.6. The parameters found in production economy models are chosen so that they are plausible. The parameters specific to this model are chosen reasonably so that the mechanism described above is exhibited. The two types are chosen close enough to each other so that the two types choose the same consumption level and do not want to deviate. Private benefit preference parameter is high enough that the political parties strongly prefer staying in power. Type switching probability is high enough so that the maximum belief is not too high and the dampening effect on the election result is significant. For the same reason, the persistence of current share is high enough. Standard deviation of the productivity
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_g</td>
<td>Good type</td>
<td>0.1</td>
</tr>
<tr>
<td>λ_b</td>
<td>Bad type</td>
<td>0.11</td>
</tr>
<tr>
<td>ψ</td>
<td>Private benefit preference</td>
<td>5</td>
</tr>
<tr>
<td>α</td>
<td>Type switching probability</td>
<td>0.3</td>
</tr>
<tr>
<td>ρ</td>
<td>Persistence of House share</td>
<td>0.8</td>
</tr>
<tr>
<td>σ_t</td>
<td>Standard Deviation of Productivity Shock</td>
<td>0.01</td>
</tr>
<tr>
<td>Ω</td>
<td>House Share Requirement</td>
<td>0.67</td>
</tr>
<tr>
<td>σ</td>
<td>CRRA parameter</td>
<td>0.5</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.9</td>
</tr>
<tr>
<td>a</td>
<td>Output elasticity of capital</td>
<td>0.3</td>
</tr>
<tr>
<td>A</td>
<td>Constant Total Factor Productivity</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Table 3.6: Parameters for numerical example

A value function iteration is performed with these parameters assuming that the bad type always chooses the same consumption level as the good type and the good type chooses its investment level optimally assuming that the bad type will choose the same consumption level. At the end, it is verified that the bad type does not want to deviate from this equilibrium in any state. Hence, it is a valid equilibrium.

3.4.2 Results

Policy Functions

Figure 3.3 plots the investment policy of the leading party of a good type government. The horizontal axis is the share of the leading party in the government. The four plots are for different levels of belief and capital. The first row plots the policies for a low belief and the second row plots policies for a high belief. The first column plots policies for a low level of capital and the second column plots policies for a high level of capital. In each plot, there are three lines, one each for the policies
Figure 3.3: Investment Policy

at different periods during an election cycle. Note that the policies are symmetric around \(\omega = 0.5 \) as the two parties are ex-ante identical in all respects. Hence without loss of generality, I plot everything only for \(\omega \geq 0.5 \).

Figure 3.3 illustrates that as the share of the leading party increases, the investment is higher since it captures a larger share of the private benefit and thus its marginal utility of investment rises. Also, investment is increasing in belief and this increase is smaller as the share of the leading party increases. As the belief increases, the future share of the leading party increases. Thus, its share in the future private benefit rises. So, it invests more. But as its current share increases, the marginal benefit of a higher belief is lower.

To see how investment behaves during the election cycle, I zoom in on different areas of the figure. Figure 3.4 shows the same plots zooming in where the share of the leading party is high. As described above, the investment falls as the economy gets closer to the scheduled election as the leading party does not like an election and the
Figure 3.4: Investment Policy at High Share

chance of an early election are low.

Next, Figure 3.5 shows the same plots zooming in where the share of the leading party is low. Here, the election-cycle choice of investment follows a different trend depending on whether the belief is high or low. If the belief is high, the chance of an early election is low and so, as in other cases the investment decreases as the economy gets closer to an election. But if the belief is low, the chance of an early election are high and the leading party consumes more now to reduce the chance of an election. As explained earlier, a non-monotonic trend in public investment is observed during the election cycle.

It is important to note that this non-monotonicity is lost if I treat the probability of an early election as an exogenous function of the state variables in line with the function found in this equilibrium. So, it is truly the ability of the leading party to influence the probability of an early election that is driving the non-monotonicity in investment observed. Thus, a model like Alesina and Tabellini (1990) with an exogenous election cannot generate this non-monotonicity.
I generate simulated data to check how the average public investment looks during a typical election cycle. Starting from an arbitrary point, I simulate the economy for a large number of periods. I take the second half of the simulated periods to stand for the behavior of the economy in the stochastic steady state. It is verified that the cumulative means of the states are stable during these periods. Analogous to the public investment in the data is the total public investment in the model which includes the private benefit. So, I plot the means of the total public investment. But the same trend is observed even in the simulated data for the public investment by itself. To remove the level effect of output and to keep the variable in line with the dependent variable used in the data analysis, I divide the total public investment by the total output in the period. Figure 3.6 plots the means of the relevant variables. In each of the plots, the horizontal axis is the time to scheduled election. So the values during an election cycle are read from right to left.

The average total public investment (Figure 3.6 right bottom) follows a non-monotonic
The election in the simulated data can be a scheduled or an unscheduled election. Thus, the average election period investment is low not only as the scheduled election period investment is low but also because when the chance of an early election is high, the investment is low. In the periods when elections do not take place, the average total public investment is lower further away from an election. The average share of the leading party in government is low (Figure 3.6 right top) and the average belief is also close to the stationary level (Figure 3.6 left bottom). So, the economy is frequently in the case when the optimal investment is lower when the scheduled election is further away. Hence, the non-monotonicity in the average total public investment to output is observed.

This non-monotonicity in the simulated data is lost if I treat the probability of an early election as an exogenous function of the state variables in line with the function found in the equilibrium. So, it is truly the ability of the leading party to influence the probability of an early election that is driving the non-monotonicity in investment observed in the simulated data.

In addition to the above, there is an additional channel that is driving the non-
monotonicity observed. As the first plot shows, on average, the good type is more likely to survive the full term and the bad type is more likely to face an early election. As the good type proceeds in the election cycle, the belief of the voters that the government is good improves. On average, the share of the leading party in the governments formed is low and hence they invest distinctly more with a higher belief. This adds to the increasing trend of the investment during the election cycle. To check that this does not exclusively drive the result, I repeat the experiment by replacing the belief update process by a process in which the belief does not improve during the election cycle and still observe the non-monotonicity of public investment during the election cycle although it is no longer as steep as that in the baseline simulation.

Democratic Systems

To see whether public investment simulated in different democratic systems behaves as observed in the data, I simulate the economy with a different House share requirement parameter Ω and/or a different functional form for the ability of the coalition partner to call an early election $h(\omega)$. Higher the Ω, more the system is like a proportional system in which the governments have bigger and more frequent coalitions as against a winner-takes-all plurality system. On the other hand, smaller the $h(\omega)$, more the system is like a presidential system in which it is more difficult to call an early election as against a parliamentary system.

I simulate the economy for $\Omega' = 0.55$ (plurality system) and find that as seen in data, the level of investment is higher than in the baseline case (proportional system). There are fewer coalition governments and thus fewer distortions due to them. The non-monotonic investment policy is present but the simulated data does not show the non-monotonicity in public investment during the election cycle as the fraction of periods in which the non-monotonic policy is chosen is now smaller.
I simulate the economy for $h'(\omega) = \frac{h(\omega)}{2}$ (presidential system) and find that as seen in data, the level of investment is higher than in the baseline case (parliamentary system). As the chance of early election is reduced, the distortions due to them are reduced. The investment policy is non-monotonic in fewer states and thus the simulated data does not show a non-monotonic trend in average public investment during the election cycle.

Thus, the model is successful in replicating different democratic systems and producing relevant trends in the data from the respective systems.

3.5 Conclusion

In this paper, the effect of coalition governments on public investment cycles is analyzed. Analyzing the panel data of 80 countries with a “months to election” variable instead of “election year” dummy variable reveals that public investment grows initially during an election cycle, reaches a peak at around two years before an election and then decreases as an election approaches. I find that this non-monotonicity of public investment during an election cycle is exacerbated if the government has a high coalition share and it is also influenced by how corrupt the government is perceived to be.

Thus, a model of political economy is developed where coalition governments can be formed and political parties in the government divert public investment funds for private benefit. A strong government which has a small coalition partner or a good sentiment among the voters invests less as an election approaches because it is difficult to form a strong government again. A weak government which has a big coalition partner and a bad sentiment among the voters reduces investment early on in the election cycle to reduce the incentive of the coalition partner to call an early election.
This generates the non-monotonic public investment during an election cycle.

This cannot be generated by an exogenous probability of an early election as in other political economy models. Thus, understanding the political interactions among the agents within a government are important to understand the allocation of public resources by the government. Winner-takes-all systems of democracy reduce the intra-government misalignment of objectives and thus reduces the distortions due to them.

In future work, the allocation decision-making power could be assigned to either party in the government based on their bargaining power. This can help alleviate the current discrepancy from the data regarding how governments of differing strength facing different corruption perception invest differently. The model can be calibrated for different political systems and the transition costs from one system to the other could be looked at in an effort to move towards less distorting winner-takes-all systems.
Appendix A

APPENDIX: Tables and Illustrations

A.1 Data Analysis

A.1.1 Refinance behavior

\begin{center}
\begin{tabular}{l c}
\textbf{Loan Age} & -3.772*** \\
\textit{State} & \\
\textit{State}^2 & 0.076*** \\
FICO & 0.008*** \\
LTV & 0.012*** \\
CLTV & 0.055*** \\
DTI & 0.015*** \\
Number of Borrowers & 1.446*** \\
First Home Flag=Y & 0.685*** \\
Adjusted R^2 & 0.251 \\
Observations & 6867645 \\

\end{tabular}
\end{center}

Table A.1: Loan Age at which it is refinanced is concave in the State

Note: State is (rate*balance/100,000). This is consistent with the refinance policy of borrowers in the model. (Data: GSE mortgages originated before 2011).
A.1.2 Search behavior (NSMO)

Figure A.1: Search Behavior according to NSMO
Note: Half of all borrowers consider only one lender. (Left: All, Right: Refinancers only)

A.1.3 Cost of Lending and Federal Funds Rate

Figure A.2: Mortgage lending cost, Average mortgage rate \propto Federal funds rate
Note: Observably, cost of mortgage lending (MBS rate) moves much more tightly with federal funds rate than the average mortgage rate (PMMS).

<table>
<thead>
<tr>
<th></th>
<th>Federal Funds Rate</th>
<th>Constant</th>
<th>Adjusted R^2</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBS Rate</td>
<td>0.81***</td>
<td>1.69***</td>
<td>0.764</td>
<td>302</td>
</tr>
<tr>
<td>PMMS</td>
<td>0.59***</td>
<td>4.30***</td>
<td>0.75</td>
<td>302</td>
</tr>
</tbody>
</table>

***: p-value < 0.01

Table A.2: Mortgage lending cost, Average mortgage rate \propto Federal funds rate
Note: Based on the co-efficient, cost of mortgage lending (MBS rate) moves much more tightly with federal funds rate than the average mortgage rate (PMMS).
A.1.4 Search, Rates and Home Equity Extraction (HMDA, GSE)

Figure A.3: Mortgage search, home equity extraction & rate spread across MSA-years
Note: Top: Home equity extraction moves in the same direction as mortgage search, across years and MSAs. Bottom: Average rate spread moves in opposite direction as mortgage search, across years and MSAs. Source: Mortgage search from HMDA, Home equity extraction and rate spread from Fannie Mae and Freddie Mac (GSE).

<table>
<thead>
<tr>
<th>PMMS</th>
<th>Search Fraction</th>
<th>PMMS*Search Fraction</th>
<th>Adj. R^2</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Equity Fraction</td>
<td>-.002396***</td>
<td>-.01904***</td>
<td>.005953***</td>
<td>0.546</td>
</tr>
<tr>
<td>mean</td>
<td>4.973723</td>
<td>0.2312726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>std. dev.</td>
<td>1.032283</td>
<td>0.0889403</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.3: Home equity extraction \propto Mortgage rate reduction, Mortgage search
Note: MSAs with more mortgage search extract more home equity in response to reduction in mortgage rates. When rates fall by 1 sd, 37% more home equity is extracted in an MSA with 1 sd more search.
A.2 Model Results

A.2.1 Steady state match with Data

Figure A.4: Untargetted Borrower Distributions

Note: Distributions correspond to those in steady state of benchmark model and to those in HMDA data and Fannie Mae and Freddie Mac (GSE) data. Rate spread in data is significantly left-skewed, similar to the Pareto distribution in model, validating the results.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Benchmark Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Mortgage Balance Difference/Overall Mean (%)</td>
<td>1.12</td>
<td>1.27</td>
</tr>
<tr>
<td>Mean Rate Difference/Overall Mean (%)</td>
<td>2.86</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Table A.4: Untargetted Relative Borrower Distribution Means

Note: Relative difference means (Type 1 - Type 2). Numbers correspond to those in steady state of benchmark model and in data (HMDA, GSE) which are untargeted by the model.
A.2.2 Benchmark vs. More Type 2’s: Steady state comparison

Figure A.5: Refinancing policy in Benchmark vs. With more Type 2 borrowers
Note: These are policies in the steady states of these two economies. With more Type 2 borrowers around, offer rates reduce, refinancing optimal in more states for both types.

<table>
<thead>
<tr>
<th>Weighted Means</th>
<th>$\frac{q_1}{q_2}$</th>
<th>2.817</th>
<th>2.154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{r}{i_{ss}}$</td>
<td>Type 1</td>
<td>Type 2</td>
</tr>
<tr>
<td></td>
<td>1.26</td>
<td>1.18</td>
<td>1.22</td>
</tr>
<tr>
<td>% who refinance</td>
<td>3.93</td>
<td>2.71</td>
<td>3.18</td>
</tr>
<tr>
<td>$1 - \frac{m}{m_{LTV}}$</td>
<td>.383</td>
<td>.405</td>
<td>.394</td>
</tr>
</tbody>
</table>

Table A.5: Mean borrower type ratio, rate, refinance frequency and home equity
Note: Numbers correspond to those in steady states of benchmark (Column 2) and economy with more Type 2 (Column 3). Due to more Type 2 borrowers on average in each state, both types get lower rates, thus they refinance less often, thus collect more home equity in steady state.
A.2.3 Monetary Policy with More Search

Figure A.6: Monetary Policy Transmission to Consumption: More Type 2 borrowers
Note: With fewer Type 1 borrowers in economy, fewer are isolated; that and the reduced market power leads to lower rates, more home equity, bigger consumption response for both types (hence, showing only the aggregate values).

Figure A.7: Monetary Policy Transmission to Consumption: Type 2 meet 3 lenders
Note: When Type 2 meet 3 lenders, isolation of Type 1 increases, ability to statistically discriminate becomes stronger, thus consumption response of Type 1 becomes much smaller; that of Type 2 remains almost same.
Appendix B

APPENDIX: Mathematical

B.1 Structural Refinance Probabilities

Given the nested logit model of a refinancing decision described in section 2.3.1, we can find the structural refinancing probabilities. The equation B.1.1 presents the probability of refinancing of a borrower with state variable z_t:

$$P_{1t}(z_t) = \sum_{k} P_{kt}(z_t) = \frac{\left(\sum_{k} \exp\left(\frac{v_{kt}(z_t) - \mu(t)}{\sigma}\right)\right)^{\sigma}}{1 + \left(\sum_{k} \exp\left(\frac{v_{kt}(z_t) - \mu(t)}{\sigma}\right)\right)^{\sigma}}$$ \hspace{1cm} (B.1.1)

In the language of a nested logit model, this is the probability of choosing the nest. The Equation B.1.2 presents the choice probabilities within the nest of refinancing. Specifically, Equation B.1.2 shows the structural probability of refinancing to contract j conditional on choosing to refinance in period t:

$$P_{jt}(z_t) = \frac{\exp\left(\frac{v_{jt}(z_t) - \mu(t)}{\sigma}\right) \left(\sum_{k} \exp\left(\frac{v_{kt}(z_t) - \mu(t)}{\sigma}\right)\right)^{\sigma-1}}{1 + \left(\sum_{k} \exp\left(\frac{v_{kt}(z_t) - \mu(t)}{\sigma}\right)\right)^{\sigma}}$$ \hspace{1cm} (B.1.2)
B.2 Calculating Demand

In this section we discuss how we find the demand function, \(q_{j\theta t}(r) \), presented in the Equation 2.3.11. The probability that a borrower with reservation interest rate \(r^* \) in market \((j, \theta, t)\) refinance with an interest rate \(r \) is as follows:

\[
Pr\{\tilde{r} = r | r < r^*, j, \theta, t \} = \frac{h_{j\theta t}(r)}{H_{j\theta t}(r^*)} \tag{B.2.1}
\]

Let \(\Phi_{j\theta t}(r^*) \) and \(\phi_{j\theta t}(r^*) \) be the distribution and density of the reservation interest rates, respectively, of type \(\theta \) borrowers in market \(j \) at time \(t \). Summing over the borrower’s reservation rate yields the share of market for loan originators charging a rate less than \(r \),

\[
Pr\{\tilde{r} = r | j, \theta, t \} = \sum_{r^* \geq r} \frac{h_{j\theta t}(r)}{H_{j\theta t}(r^*)} \phi_{j\theta t}(r^*) \tag{B.2.2}
\]

Finally, since a mass \(h(r) \) of loan originators charge interest rate \(r \), and the borrower samples each of these lenders with equal probability, the residual demand curve for a loan originator charging rate \(r \) is the above quantity divided by \(h(r) \):

\[
q_{j\theta t}(r) = \sum_{r^* \geq r} \frac{\phi_{j\theta t}(r^*)}{H_{j\theta t}(r^*)} \tag{B.2.3}
\]

This calculation is quite similar to Agarwal et al. (2017). The difference is that the reservation distribution depends on the search costs distribution of the borrowers with type \(\theta \) who choose to refinance to contract \(j \) at time \(t \).

\[
\sum_{(c,x,r')} \mu_{\theta t}(c, x, r') P_{j\theta t}(c, x, r') \tag{B.2.4}
\]
in which \(\mu \) is the mass of borrowers. Therefore we can find the distribution of the reservation interest rate:

\[
\phi \theta_j t (r^*) = \sum_{(c, x, r')} \mu \theta_j t (c, x, r') P \theta_j t (c, x, r') 1 \{ r^* j \theta t = \tilde{r} \} \tag{B.2.5}
\]

B.3 Dynamic of Borrowers Mass

We define \(\mu_t (z_t) \) as the mass of borrowers with a mortgage at time \(t \) in state \(z_t \).
Precisely, it captures the mass of borrowers at time \(t \) with type \((c, \theta)\) and mortgage contract \((r, x)\). To find \(\mu_{t+1} \) in every state we need to know the transition probabilities of states and refinancing choice of borrowers. Additionally, we need to know the mass of new mortgage originators.

\[
\mu_{t+1} (c, \theta_{t+1}, r_{t+1}, x_{t+1}) = \sum_{\theta_t} \mu_t (c, \theta_t, r_t, x_t) \delta_t (x_t) f_{0t} (\theta_{t+1} | \theta_t) \tag{B.3.1}
\]

\[+ \sum_{\theta_t} \sum_{r_t} \sum_{x_t} \mu_t (c, \theta_t, r_t, x_t) (1 - \delta_t (x_t)) P_{0t} (c, \theta_t, r_t, x_t) f_{0t} (x_{t+1}, \theta_{t+1} | x_t, \theta_t) \]

\[+ \sum_{\theta_t} \sum_{r_t} \sum_{x_t} \mu_t (c, \theta_t, r_t, x_t) (1 - \delta_t (x_t)) P_{x_t+1} (c, \theta_t, r_t, x_t) f_{1t} (\theta_{t+1} | \theta_t) h_{x_t+1} (r_{t+1} | r^* (c, \theta_t, x_{t+1})) \]

The dynamic of potential borrowers are as follow,

\[
\mu^0_{t+1} (c, \theta_{t+1}) = \sum_{\theta_t} \sum_{r_t} \sum_{x_t} \mu_t (c, \theta_t, r_t, x_t) \delta_t (x_t) f_{0t} (\theta_{t+1} | \theta_t) \tag{B.3.2}
\]

\[+ \sum_{\theta_t} \mu^0_t (c, \theta_t) (1 - \delta^0_t (c, \theta_t)) f_{0t} (\theta_{t+1} | \theta_t) \]

We assume that there is no growth in the potential borrowers in the mortgage market:
\[
\sum_{\theta_t} \mu_t^0(c, \theta_t) + \sum_{\theta_t} \sum_{r_t} \sum_{x_t} \mu_t(c, \theta_t, r_t, x_t) = g_c \quad \forall t \quad (B.3.3)
\]

\(g_c\) is the mass of borrowers with search cost \(c\).

Moreover, we assume the probability of becoming a homeowner is independent of search cost:

\[
\delta^0_t(c, \theta_t) = \delta^0_t(\theta_t) \quad \forall c \quad (B.3.4)
\]

B.4 EM Algorithm

To estimate empirical CCPs, we follow the first stage EM algorithm in Arcidiacono and Miller (2011). In this appendix section, we explain the expectation and maximization steps.

Expectation Step:

The first step of \(m\)th iteration is to calculate the conditional probability of being in each unobserved state given the values of the structural parameters and conditional choice probabilities from the \(m\)th iteration, \(\{\Theta^{(m)}, g^{(m)}\}\). The likelihood of the data on \(i\) given the parameters at \(m\)th iteration is found by evaluating equation B.4.1.

\[
L(d_{it}, z_{it+1}; \Theta^{(m)}, g^{(m)}) \equiv \sum_{c_i} g^{(m)}(c_i|\hat{z}_i) \left(\prod_{t=1}^{T} \mathcal{L}_t(d_{it}, z_{i,t+1}|z_{it}; \Theta^{(m)}, g^{(m)}) \right) \quad (B.4.1)
\]

where \(\Theta \equiv (\beta_c, \beta_x, \hat{\beta}, \hat{p}_{j|x|})\) and \(\hat{z}_i = (\theta_1, r_1, x_1)\). To simplify, we define the following:

\[
L_i^{(m)} \equiv L(d_{i}, z_{i}|\hat{z}_i; \Theta^{(m)}, g^{(m)}) \quad (B.4.2)
\]
Similarly, we denote by \(L_i^{(m)}(c_i = c) \) the joint likelihood of the data and unobserved state \(c_i \), given the parameter evaluation at iteration \(m \).

\[
L_i^{(m)}(c_i = c) \equiv L(d_i, z_i, c_i = c|\hat{z}_{i1}; \Theta^{(m)}, g^{(m)})
\]

(B.4.3)

where,

\[
L(d_i, z_i, c_i = c|\hat{z}_{i1}; \Theta^{(m)}, g^{(m)}) = g^{(m)}(c|\theta_{i1}, r_{i1}, x_{i1}) \left(\prod_{t=1}^{T} \mathcal{L}_t(d_{it}, z_{i,t+1}|z_{it}; \Theta^{(m)}, g^{(m)}) \right)
\]

(B.4.4)

At iteration \(m + 1 \), the probability of \(i \) being in unobserved state \(c \), \(q_{ic}^{(m+1)} \), then follows from Bayes rule:

\[
q_{ic}^{(m+1)} = \frac{L_i^{(m)}(c_i = c)}{L_i^{(m)}}
\]

(B.4.5)

We update the probabilities of unobserved states in equation B.4.6.

\[
g^{(m+1)}(c|\hat{z}_1) = \frac{\sum_{i=1}^{N} q_{ic}^{(m+1)} 1(\theta_{i1} = \theta_1, r_{i1} = r_1, x_{i1} = x_1)}{\sum_{i=1}^{N} 1(\theta_{i1} = \theta_1, r_{i1} = r_1, x_{i1} = x_1)}
\]

(B.4.6)

Maximization Step

\[
\Theta^{(m+1)} \equiv \arg\max_N \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{c} \sum_{j=1}^{J} q_{ic}^{(m+1)} \ln \mathcal{L}_t(d_{it}, z_{i,t+1}, c_i = c|z_{it}; \Theta^{(m)}, g^{(m+1)})
\]

(B.4.7)

To estimate the empirical CCPs, we use random sample of loans originated between 2008 to 2009 that are followed until 2015.
B.5 Parametric Assumptions for the First Stage

In this section, we discuss the parametric assumptions for approval probability and the offered rate distribution. In the Equation B.5.1 we specify the approval probability:

\[\lambda_{j\theta t} = \frac{\exp(\beta^j + \beta^\theta + \beta^t)}{\sum_{\tilde{\theta}} \sum_{\tilde{j}} \exp(\beta^j_{\tilde{j}} + \beta^\theta_{\tilde{\theta}} + \beta^t)} \]

(B.5.1)

where \(\{\beta^j, \beta^\theta, \beta^t\} \) for all \(j \) and \(\theta \) are the parameters to be estimated. \(\beta^\theta \) are the dummies for FICO® Score groups, \(\beta^j \) are the dummies for LTV groups, and \(\beta^t \) are the year dummies.

Based on 2.3.3, offer rate distribution from the supply side of the model is as follows:

\[h_{j\theta t}(r) = \frac{\exp((r - \hat{r}_{j\theta t} - \chi)q_{j\theta t}(r))}{\sum_k \exp((r - \hat{r}_{j\theta t} - \chi)q_{j\theta t}(r))} \]

(B.5.2)

where \(\{\chi, \sigma\} \) are parameters to be estimated given the marginal demand function \(q_{j\theta t}(r) \).

In order to find the offer rate distribution from equation B.5.2, we need to have the marginal demand function \(q_{j\theta t} \), which itself is a function of \(h_{j\theta t} \). This is a fixed point problem, which is time-consuming to estimate. To simplify, we guess a functional form for the offered rate distribution, \(h^N_{j\theta t} \) and then we make sure that the guess is a good approximation of structural offered rate distribution \(h_{j\theta t} \) presented in the Equation B.5.2. We assume a normal distribution \(h^N_{j\theta t} \sim N(\hat{r}_{j\theta t} + \beta^h_j + \beta^h_\theta + \beta^h_t, \sigma_h) \) in which \(\{\beta^h_j, \beta^h_\theta, \beta^h_t\} \) are the dummies for contract, creditworthiness and year.
BIBLIOGRAPHY

Agarwal, S., J. Grigsby, A. Hortaçsu, G. Matvos, A. Seru, and V. Yao (2017). Search and screening in credit markets. *Working Paper*. 1, 2, 2.1, 2.2, 2.2.2, 2.3, 2.3.2, 2.3.2.2, 2.4, 2.4.1, 2.4.1, 2.5, B.2

Andersen, S., J. Y. Campbell, K. M. Nielsen, and T. Ramadorai (2018). Sources of inaction in household finance: Evidence from the danish mortgage market. Available at SSRN 2463575. 2

De los Santos, B., A. Hortaçsu, and M. R. Wildenbeest (2012). Testing models of
consumer search using data on web browsing and purchasing behavior. *American Economic Review* 102(6), 2955–80. 2

Greenwald, D. (2018). The mortgage credit channel of macroeconomic transmission. 1, 1.2.2, 1.2.4, 1.2.4

170
Hurst, E., B. J. Keys, A. Seru, and J. Vavra (2016). Regional redistribution through the us mortgage market. *American Economic Review* 106(10), 2982–3028. 1, 1.1.1

Wong, A. (2019). Refinancing and the transmission of monetary policy to consumption. American Economic Review. 1