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Figure 47: Nilpotent deformations of the SO(10) quiver from the UV configuration of figure
40. See figure 46 for additional details on the notation and conventions.
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sp1–1 1–sp0

so10–4 4–so9...

[5, 3, 12]

so10–4 2–su2

sp1–1 down (+2Ā)

sp1–1 down (+1Ā)

so10–4 3–so7

sp1–1 1–sp1

so10–4 4–so10...

[52]

so10–4 2–su2

sp1–1 down (+1Ā)

sp1–1 down

so10–4 3–so7

sp1–1 1–sp0

so10–4 4–so9...

[7, 13]

so10–4 2–su2

sp1–1 down (+2Ā)
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so10–4 3–g2
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so10–4 4–so9...
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so10–4 2–∅
sp1–1 down (+2Ā)
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Figure 47: (continued) Nilpotent deformations of the SO(10) quiver from the UV configu-
ration of figure 40. See figure 46 for additional details on the notation and conventions.
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UV IRstring junction

...

[19]
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sp1–1 1–sp0
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...

[22, 15]

so12–4 4–so12

sp1–1 down

so11–4 3–so11

sp2–1 1–sp2

...

[24, 1]

so12–4 4–so12

sp1–1 1–sp0

so11–4 4–so10

sp2–1 1–sp2

...

[3, 16]

so12–4 4–so12

sp1–1 down

so11–4 3–so10

sp2–1 1–sp2

...

[3, 22, 12]

so12–4 4–so12

sp1–1 down

so11–4 4–so9

sp2–1 1–sp2

...

[32, 13]

so12–4 4–so11

sp1–1 down

so11–4 3–so8

sp2–1 1–sp1

...

[5, 14]

so12–4 4–so12

sp1–1 down (+1Ā)

so11–4 3–so7

sp2–1 1–sp2

...

[33]1

Figure 48: Nilpotent deformations of the SO(9) quiver from the UV configuration of figure
41. See figure 46 for additional details on the notation and conventions.
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so12–4 4–so12

sp1–1 down (+1Ā)

so11–4 3–so7

sp2–1 1–sp1

...

[5, 22]

so12–4 4–so12

sp1–1 down (+1Ā)

so11–4 3–g2

sp2–1 1–sp1

...

[42, 1]

so12–4 4–so11

sp1–1 down (+1Ā)

so11–4 3–g2

sp2–1 1–sp1

...

[5, 3, 1]

so12–4 4–so9

sp1–1 down (+1Ā)

so11–4 3–su3

sp2–1 1–sp0

sp2–1 1–sp1

so12–4 4–so11...

[7, 12]

so12–4 3–g2

sp1–1 down (+2Ā)

so11–4 2–su2
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sp2–1 1–sp0

so12–4 4–so9

sp2–1 1–sp1

so12–4 4–so11...

[9]

Figure 48: (continued) Nilpotent deformations of the SO(9) quiver from the UV configura-
tion of figure 41. See figure 46 for additional details on the notation and conventions.
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so14–4 4–so14

sp3–1 1–sp3

UV IRstring junction

...

[16]

so14–4 4–so13

sp3–1 1–sp3...

[2, 14]

so14–4 4–so12

sp3–1 1–sp3...

[22, 12]

so14–4 4–so11

sp3–1 1–sp3...

[23]

so14–4 4–so11

sp3–1 1–sp2

so14–4 4–so13...

[4, 12] so14–4 4–so10

sp3–1 1–sp2

so14–4 4–so14...

[32]

so14–4 4–so10

sp3–1 1–sp2

so14–4 4–so13

sp3–1 1–sp3...

[4, 2]

so14–4 4–so9

sp3–1 1–sp1

so14–4 4–so11

sp3–1 1–sp2

so14–4 4–so13...

[6]

Figure 49: Nilpotent deformations of the Sp(3) quiver from the UV configuration of figure
42. See figure 46 for additional details on the notation and conventions.

2.4.5 Comments on Quiver-like Theories with Exceptional Algebras

It is natural to ask whether the propagation rules given for quivers with classical algebras

also extend to theories with exceptional algebras. In principle, we expect this to follow from
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our description of the nilpotent cone in terms of multi-pronged string junctions. Indeed,

we have already explained that at least for semi-simple deformations, there is no material

distinction between the quivers of classical and exceptional type.

That being said, we expect our analysis of nilpotent deformations to be more subtle in this

case. Part of the issue is that even in the case of the D-type algebras, to really describe

the physics of brane recombination, we had to go onto the full tensor branch so that both

SO and Sp gauge algebras could be manipulated (via brane recombination). From this

perspective, we need to understand brane recombination in 6D conformal matter for the

following configurations of (EN , EN ) conformal matter:

[E6], 1, 3, 1, [E6] (2.4.7)

[E7], 1, 2, 3, 2, 1, [E7] (2.4.8)

[E8], 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, [E8]. (2.4.9)

Said differently, a breaking pattern which connects two E-type algebras will necessarily

involve a number of tensor multiplets. For the most part, one can work out a set of “phe-

nomenological” rules which cover nearly all cases involving quivers with E6 gauge algebras,

but its generalization to E7 and E8 appears to involve some new ingredients beyond the

ones introduced already in this chapter. For all these reasons, we defer a full analysis of

these cases to future work.

2.5 Short Quivers

In the previous section, we demonstrated that the physics of brane recombination accurately

recovers the expected Higgs branch flows for 6D SCFTs. It is reassuring to see that these

methods reproduce – but also extend – the structure of Higgs branch flows obtained through

other methods. The main picture we have elaborated on is the propagation of T-brane data

into the interior of a quiver-like gauge theory.

The main assumption made in these earlier sections is the presence of a sufficient number of
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gauge group factors in the interior of the quiver so that this propagation is independent of

other T-brane data associated with other flavor symmetry factors. In this section we relax

this assumption by considering “short quivers” in which the number of gauge group factors

is too low to prevent such an overlap. There has been very little analysis in the 6D SCFT

literature on this class of RG flows.

Using the brane recombination picture developed in the previous section, we show how

to determine the corresponding 6D SCFTs generated by such deformations. We mainly

focus on quivers with classical algebras, since this is the case we presently understand most

clearly. Even here, there is a rather rich structure of possible RG flows.

There are two crucial combinatorial aspects to our analysis. First of all, we use open strings

to collect recombined branes into “blobs.” Additionally, to determine the scope of possible

deformations, we introduce brane / anti-brane pairs, as prescribed by the rules of section

2.4. To track the effects of having a short quiver, we gradually reduce the number of gauge

group factors until the brane moves on either side of the quiver become correlated. As a

result, we sometimes reach configurations in which the anti-branes cannot be eliminated.

We take this to mean that we have not actually satisfied the D-term constraints in the

quiver-like gauge theory.

The procedure we outline also has some overlap with the formal proposal of reference [313]

(see also [28]), which analyzed Higgs branch flows by analytically continuing the rank of

gauge groups to negative values. Using our description in terms of anti-branes, we show that

in many cases, the theory we obtain has an anomaly polynomial which matches to these

proposed theories. We also find, however, that in short quivers (which were not analyzed

in [313]) this analytic continuation method sometimes does not produce a sensible IR fixed

point. This illustrates the utility of the methods developed in this chapter.

In the case of sufficiently long quiver-like theories, there is a natural partial ordering set by

the nilpotent orbits in the two flavor symmetry algebras. In the case of shorter quivers, the
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partial ordering becomes more complicated because there is (by definition) some overlap

in the symmetry breaking patterns on the two sides of a quiver. In many cases, different

pairs of nilpotent orbit wind up generating the same IR fixed point simply because most

or all of the gauge symmetry in the quiver has already been Higgsed. We show in explicit

examples how to obtain the corresponding partially ordered set of theories labeled by pairs

of overlapping nilpotent orbits. We refer to these as “double Hasse diagrams” since they

merge two Hasse diagrams of a given flavor symmetry algebra.

To illustrate the main points of this analysis, we primarily focus on illustrative examples in

which the number of gauge group factors in the interior of a quiver is sufficiently small and

/ or in which the size of the nilpotent orbits is sufficiently large so that there is non-trivial

overlap between the breaking patterns on the left and right. For this reason, we often work

with low rank gauge algebras such as su(4) and so(8) and a small number of interior gauge

group factors, though we stress that our analysis works in the same way for all short quivers.

The rest of this section is organized as follows. First, we show how to obtain short quivers

as a limiting case in which we gradually reduce the number of gauge group factors in a long

quiver. We then turn to a study of nilpotent hierarchies in these models, and we conclude

this section with a brief discussion of the residual global symmetries after Higgsing in a

short quiver.

2.5.1 From Long to Short Quivers

In this subsection, we determine how T-brane data propagating from the two sides of a

quiver becomes intertwined as we decrease the number of gauge groups / tensor multiplets.

It is helpful to split up this analysis according to the choice of gauge group appearing, so

we present examples for each different choices of gauge algebras.
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SU(N) Short Quivers

We begin with quiver-like theories with su gauge algebras. Applying the Hanany-Witten

rules from section 2.4.1 to the type IIA realization of the SU(N) theories, we have that:

kNS5 ≥ Max{µ1
L, µ

1
R}+ 1 (2.5.1)

for left and right partitions µL = [µi], µR = [µj ] respectively. Here, kNS5 denotes the number

of NS5-branes in the corresponding type IIA picture. When this condition is violated, it is

impossible to balance the D8-branes. Note that kNS5 is also equal to one plus the number

of −2 curves N−2 = NT the number of tensor multiplets in the UV quiver, so we may

equivalently write this condition as

Max{µ1
L, µ

1
R} ≤ N−2, (2.5.2)

where N−2 denotes the number of −2 curves in the UV quiver. This is equivalent to saying

that, when only one nilpotent deformation (either µL or µR) is implemented over the UV

quiver (either the left or right partition), there has to be at least one −2 curve whose fiber

remains untouched by the deformation.

Assuming this restriction is obeyed, we can straightforwardly produce any short SU(N)

quiver given a UV quiver and a pair of nilpotent orbits. Before giving the general formula,

however, let us look at a concrete example: consider a UV theory of SU(5) over five −2

curves, and apply the nilpotent deformations of [3, 2] – [22, 1], where no interaction between

the orbits take place. This theory can be written as:

[3, 2] :
su(2)

2
su(4)

2
[Nf=1]

su(5)
2

[Nf=1]

su(5)
2

[SU(2)]

su(3)
2

[Nf=1]
: [22, 1] (2.5.3)

where the notation [Nf = 1] refers to having one additional flavor on each corresponding

gauge algebra.
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We now decrease the length of the quiver and gradually turn it into a short quiver. We

decrease the number of −2 curves one at a time, and when the nilpotent deformation from

the left and right overlaps, we simply add the rank reduction effect together linearly. After

each step we get:

[3, 2] :
su(2)

2
su(4)

2
[Nf=1]

su(5)
2

[SU(3)]

su(3)
2

[Nf=1]
: [22, 1] (2.5.4)

[3, 2] :
su(2)

2
su(4)

2
[SU(3)]

su(3)
2

[SU(2)]
: [22, 1] (2.5.5)

At this stage we are unable to decrease the length of the quiver any further without violating

the constraint of (2.5.2).

We note that each step changes the global symmetry, the gauge symmetry, or both. In

particular, after the second step we no longer see a node with the UV gauge group SU(5).

The global symmetries also change at each step, which will be discussed further in 2.5.4.

Let us consider another example of a short quiver with SU(N) gauge groups. If we take

the UV quiver theory to be:

[SU(6)]
su(6)

2
su(6)

2
su(6)

2
su(6)

2
su(6)

2 [SU(6)] (2.5.6)

and apply the following pair of nilpotent deformations denoted by partitions µL,R:

µL = [5, 1], µR = [23] (2.5.7)

we obtain the resulting IR theory:

su(2)
2

[Nf=1]

su(3)
2

su(4)
2

su(5)
2

[SU(3)]

su(3)
2

[Nf=1]
. (2.5.8)

We illustrate another example with SU(5) UV gauge group and partitions µL = [5], µR =

[4, 1] in figure 50, making the brane recombination explicit.
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su5–2 2–su1

su5–2 2–su2

su5–2 2–su2

su5–2 2–su2

su5–2 2–su2

UV IRstring junction
[5]

[4, 1]

Figure 50: An SU(N) short quiver brane picture, the pair of nilpotent deformation being
µL = [5], µR = [4, 1] on SU(5) UV theory and four −2 curves. The figure is arranged so
that the left deformation starts from the top and propagates downwards (in black) while
the right deformation starts on the bottom and propagates upwards (blue).

In general, let us define the conjugate partitions of the left and right nilpotent orbits to be

ρL := µTL and ρR := µTR and denote their number of elements as N ′L and N ′R, with the index

counting from each of their starting point, respectively. Then, the gauge group rank at the

mth node is given by

rm = N −
N ′L∑

i=m+1
ρLi −

N ′R∑
j=(N−2)−m+1

ρRj , (2.5.9)

with the UV gauge group equal to SU(N).

Interlude: SO and Sp Short Quivers

In the case of quivers with SU gauge groups, the Higgsing of the corresponding quiver-like

gauge theories is controlled by vevs for weakly coupled hypermultiplets. In this case, the

physics of brane recombination primarily serves to simplify the combinatorics associated

with correlated breaking patterns in the quiver. Now, an important feature of the other

quiver-like theories with flavor groups SO or Sp is the more general class of possible Higgs

branch flows as generated by 6D conformal matter. Recall that on the full tensor branch

of such a theory, we have a gauge group consisting of alternating classical gauge groups.
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These gauge groups typically have bifundamental matter (in half-hypermultiplets of SO×Sp

representations), which in turn leads to Higgs flows generated by “classical matter,” much

as in the case of the SU quivers. There are, however, more general Higgs branch flows

connected with vevs for conformal matter. Recall that these are associated with a smoothing

deformation for a collapsed −1 curve, namely the analog of a small instanton transition as in

the case of the E-string theory. The combinatorics associated with this class of Higgs branch

flows is more subtle, but as we have already remarked, the brane / anti-brane description

correctly computes the resulting IR fixed points in this case as well.

By definition, in the case of a short quiver, the effects of Higgsing on the two sides of

the quiver become correlated. It is therefore helpful to distinguish a few specific cases of

interest as the size of the nilpotent orbit / breaking pattern continues to grow. As the

size of the nilpotent orbit grows, the appearance of a small instanton deformation becomes

inevitable. The distinguishing feature is the extent to which small instanton transitions

become necessary to realize the corresponding Higgs branch flow. When there is at least

one −1 curve remaining in the tensor branch description of the Higgsed theory, we refer to

this as a case where the nilpotent orbits are “touching.” The end result is that so many small

instanton deformations are generated that the tensor branch of the resulting IR theory has

no −1 curves at all. We refer to this as a “kissing case” since the partitions are now more

closely overlapping. Increasing the size of a nilpotent orbit beyond a kissing case leads to

a problematic configuration: There are no more small instanton transitions available (as

the −1 curves have all been used up). We refer to these as “crumpled cases.” In terms of

our brane / anti-brane analysis, this leads to configurations with A branes which cannot

be canceled off. Such crumpled configurations are inconsistent, and must be discarded.

Summarizing, we refer to the different sorts of overlapping nilpotent orbit configurations

as:

• A “touching” configuration is one in which all gauge groups of the quiver-like theory

are at least partially broken, but at least one −1 curve remains in the tensor branch
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of the Higgsed theory.

• A “kissing” configuration is defined as one in which all groups of the quiver-like theory

are at least partially broken, and there are no −1 curves remaining in the Higgsed

theory.

• A “crumpled” configuration is defined as one in which the orbits have become so large

that there are left over A branes which cannot be canceled off, and therefore such

configurations are to be discarded.

Of course, there are also nilpotent orbits which are uncorrelated, as will occur whenever the

quiver is sufficiently long or the nilpotent orbits are sufficiently small, which we can view

as “independent cases.” Such “independent / touching cases” fall within the scope of the

long quiver analysis that we have discussed previously – the latter just marginally so. We

illustrate all four configurations in figure 51 for SO(10) with partitions µL = µR = [9, 1]

going from an “independent” (long) quiver configuration all the way down to a forbidden

“crumpled” configuration.

Following the IIA realization from section 2.4.1, we can formally perform Hanany-Witten

moves even when small instanton transitions occur by allowing for a negative number of D6-

branes, or in the string-junction picture by allowing brane / anti-brane pairs as intermediate

steps in our analysis. The formula (2.5.2) generalizes to the other quiver-like theories with

classical algebras:

k 1
2 NS5 ≥ Max{µ1

L, µ
1
R}+ 1, rounded up to the nearest even number. (2.5.10)

⇐⇒ NT ≥ Max{µ1
L, µ

1
R}. (2.5.11)

Here k 1
2 NS5 is the number of half NS5-branes in the corresponding type IIA picture, and

equals one plus the number of tensor multiplets in the UV quiver (NT = 2N−4 + 1) in the

UV. One might worry that this becomes meaningless whenever small instanton transitions

occur. Indeed, the quivers described after such transitions all have matter with spinor rep-
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resentations and therefore no perturbative type IIA representation. While we can formally

draw suspended brane diagrams with gauge groups of negative ranks, physically there is no

corresponding suspended brane diagram. However, by analytically continuing the anomaly

polynomials of these quivers to the case of negative ranks, we find perfect agreement with

the anomaly polynomials of the actual, physical theory constructed via F-theory. This gives

us strong reason to believe that the rules for Hanany-Witten moves should likewise carry

over to the formal IIA brane diagrams, which implies that the formal quiver must be of

length at least Max{µ1
L, µ

1
R}.

Finally, from the brane / anti-brane analysis, we note that there should not be any residual

A’s in the IR theories. Any configuration yielding extra A’s that cannot be canceled are

said to “crumple” and are therefore forbidden. This further restricts the above constraints

from Hanany-Witten moves.

As an example, an SO(2N) quivers with partitions

µL = µR = [2N − 1, 1] (2.5.12)

requires that

k 1
2 NS5 ≥ 2N + 4, (2.5.13)

which is a strictly stronger lower bound than the one imposed by equation 2.5.11. This par-

ticular example is illustrated for SO(10) with partitions µL = µR = [9, 1] in the “crumpling”

example of subfigure 51d.

SO(2N) Short Quivers

As we did in the SU(N) case, we now show how to produce short SO(2N) quivers beginning

from long ones. For our first example, we consider the following formal SO(8) quiver:

[5, 3] :
sp(−3)

1
so(4)

4
sp(−1)

1
so(7)

4 1
so(8)

4
sp(−1)

1
so(4)

4
sp(−3)

1 : [42], (2.5.14)
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sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–su2

sp1–1 down (+1Ā)

so10–4 3–g2

sp1–1 1–sp0

so10–4 4–so9

sp1–1 1–sp1

so10–4 4–so9

sp1–1 1–sp0

so10–4 3–g2

sp1–1 down (+1Ā)

so10–4 2–su2

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

UV IRstring junction
[9, 1]

[9, 1]

(a) Independent example: Partitions
µL = µR = [9, 1] on 17 curves.

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+1Ā)

so10–4 2–su2

sp1–1 down

so10–4 3–g2

sp1–1 1–sp0

so10–4 3–so8

sp1–1 1–sp0

so10–4 2–su2

sp1–1 down (+1Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

UV IRstring junction
[9, 1]

[9, 1]

(b) Touching example: Partitions µL =
µR = [9, 1] on 15 curves. Some but not all
−1 curves participate in small instanton
deformations.

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–su2

sp1–1 down (+1Ā)

so10–4 2–su3

sp1–1 down

so10–4 2–su3

sp1–1 down (+1Ā)

so10–4 2–su2

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

UV IRstring junction
[9, 1]

[9, 1]

(c) Kissing configuration: Partitions
µL = µR = [9, 1] on 13 curves. Every
−1 curve participates in a small instan-
ton / smoothing deformation.

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

Three
extra
Ā’s

UV IRstring junction
[9, 1]

[9, 1]

(d) Crumpled configuration: Partitions
µL = µR = [9, 1] on only 11 curves. Too
many A’s are generated.

Figure 51: Holding fixed the partitions µL = µR = [9, 1] we can decrease the number of
curves to go from a long quiver (where the deformations are independent) all the way to a
forbidden crumpled configuration.
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which is converted into the following F-theory quiver:

[5, 3] :
su(2)

2
g2
3 1

so(7)
3

[SU(2)]

su(2)
2 [42]. (2.5.15)

If we reduce the length by one, we would get a kissing theory (that is, every −1 curve has

been blown-down):

[5, 3] :
su(2)

2
[Nf=1]

su(3)
2

[SU(2)]

su(2)
2

[Nf=1]
[42] . (2.5.16)

However, if we try to further reduce the length, we will reach a case that “crumples” due

to an excess of A’s that cannot be canceled, and therefore is invalid.

We can also keep the length of the quiver fixed and follow the RG flows along the nilpotent

orbits (we will discuss this part in more detail in section 2.5.3). Consider the same example,

but now increase the right nilpotent orbit from [42] to [5, 3]. We still get an “independent”

theory:

[5, 3] :
su(2)

2
g2
3 1

[SU(2)]

g2
3

su(2)
2 [5, 3] . (2.5.17)

If we further increase the right nilpotent orbit to [7, 1], we will instead get a kissing theory:

[5, 3] : [SU(2)× SU(2)]
su(2)

2
su(2)

2
su(2)

2
[Nf=3/2]

2 [7, 1] . (2.5.18)

At this step, increasing the left orbit also up to [7, 1] would give a crumpled configuration,

which is not allowed.

We can describe all of this in general using the string junction picture previously developed.

Following our previous proposal for long quiver brane pictures, we start from the outermost

curves of the quiver, where we initialize our nilpotent deformation in terms of the string

junction picture. Then, following the SO/Sp propagation rule, we propagate the clusters

from both sides towards the middle simultaneously. In the case of short quivers, strings

from both sides might end up touching, sharing different intermediate layers, in which case

the gauge group reduction effects from both sides add together. For example, figure 52
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illustrates the action of µL = [9, 1], µR = [52] for SO(10) in a theory with 11 curves.

We note that we can have new situations that could not previously occur in long quivers.

The first novelty comes from the fact that levels with so gauge algebra can now be Higgsed

by two A’s: one from the left nilpotent deformation and one from the right. As a result,

we get configurations where two anti-branes accumulate on the same −4 curve and reduce

it to a −2 curve. The resulting gauge algebra is then given by two applications of the rules

for anti-brane reductions given in section 2.4.4. Figure 53 illustrates this phenomenon for

a pair of theories, which respectively involve the reductions:

so7
A→ g2

A→ su3 (2.5.19)

so6 ' su4
A→ su3

A→ su2. (2.5.20)

The second novelty is that, in the SO(8) case, partitions related by the triality outer

automorphism do not necessarily yield the same IR theory! We saw previously that the

long quivers for µ = [24]I,II and µ = [3, 15] are identical, as well as long quivers with

deformations µ = [42]I,II and µ = [5, 13]. In the case of a long quiver, both of the [42] and

[5, 13] deformations reduces the UV theory to the following IR theory [240]:

su(2)
2

so(7)
3

[SU(2)]
1

so(8)
4 . . . [SO(8)] . (2.5.21)

However, if we go to the short quiver cases from a UV theory of three −4 curves, we see

that the pairs of [42] – [42] and [42] – [5, 13] both yield the following quiver theory:

su(2)
2

[Nf=1/2]

g2
2

[Sp(2)]

su(2)
2

[Nf=1/2]
. (2.5.22)

However, the pair of deformation [5, 13] – [5, 13] gives a different short quiver theory:

su(2)
2

su(4)
2

[SU(4)]

su(2)
2 . (2.5.23)
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sp1–1 down (+2Ā)

so10–4 2–∅

sp1–1 down (+2Ā)

so10–4 2–su2

sp1–1 down (+1Ā)

so10–4 3–g2

sp1–1 1–sp0

so10–4 3–g2

sp1–1 down (+1Ā)

so10–4 2–su2

sp1–1 down (+2Ā)

UV IRstring junction
[9, 1]

[52]

Figure 52: An SO(10) short quiver brane picture for nilpotent deformations µL = [9, 1],
µR = [52]. Additional branes are needed in order to construct the associated string di-
agrams, which in turn introduces anti-branes (depicted by white circles). The figure is
arranged so that the left deformation starts from the top and propagates downwards (in
black) while the right deformation starts on the bottom and propagates upwards (in blue).
After the blowdown and Higgsing procedures, all but one of the −1 curves are blown down,
and the remaining curves now have self-intersection −2 or −3.
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sp0–1 down (+2Ā)

so8–4 2–∅

sp0–1 down (+2Ā)

so8–4 2–su2

sp0–1 down (+1Ā)

so8–4 2–su3

sp0–1 down (+1Ā)

so8–4 2–su2

sp0–1 down (+2Ā)

UV IRstring junction
[7, 1]

[42]

(a) An example of a configuration that was not found
for long quivers: partitions µL = [7, 1], µR = [42] for a
short quiver with 9 curves. Note that two A’s land on
the third −4 curve, one from the top (left partition)
and one from the bottom (right partition). There, the

gauge group is reduced according to so7
A→ g2

A→ su3.

sp0–1 down (+2Ā)

so8–4 2–∅

sp0–1 down (+2Ā)

so8–4 2–su2

sp0–1 down (+1Ā)

so8–4 2–su2

sp0–1 down (+1Ā)

so8–4 2–su2

sp0–1 down (+2Ā)

UV IRstring junction
[7, 1]

[5, 3]

(b) A second example of a configuration that was not
found for long quivers: partitions µL = [7, 1], µR =
[5, 3] for a short quiver with 9 curves. Note that two
A’s land on the third −4 curve, one from the top (left
partition) and one from the bottom (right partition).
There, the gauge group is reduced according to so6 '
su4

A→ su3
A→ su2.

Figure 53: Two interesting examples where two A’s land on the same −4 curve resulting in
a chain of Higgsings that was not previously observed for long quivers.
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sp0–1 down (+2Ā)

so8–4 2–su2

sp0–1 down (+1Ā)

so8–4 2–g2

sp0–1 down (+1Ā)

so8–4 2–su2

sp0–1 down (+2Ā)

UV IRstring junction
[42]

[42]

(a) Partitions µL = µR = [42] for a short quiver with
7 curves. We note that in contrast to long quivers,
we obtain a different IR theory than for the partitions
µL = µR = [5, 13]. Two A’s land on the middle −4
curve, one from the top (left partition) and one from
the bottom (right partition). There, the gauge group

is reduced according to so8
A→ so7

A→ g2.

sp0–1 down (+1Ā)

so8–4 2–su2

sp0–1 down

so8–4 2–su4

sp0–1 down

so8–4 2–su2

sp0–1 down (+1Ā)

UV IRstring junction
[5, 13]

[5, 13]

(b) Partitions µL = µR = [5, 13] for a short quiver with
7 curves. We note that in contrast to long quivers we
obtain a different IR theory than for the partitions
µL = µR = [42]. On the middle −4 curve we now have
so6 ' su4 gauge algebra.

Figure 54: Nilpotent orbits with µ = [5, 13] or µ = [42] yield the same IR theories for long
quivers (see figure 46 for instance). However, here we see a clear difference for short quivers.

This is a new effect regarding the outer automorphism of SO(8), which is specific to having

a short quiver. The main point is that is that both [42] – [42] and [42] – [5, 13] have one or

two A branes involved, making it possible to reduce the gauge symmetry to g2, while the

[5, 13] – [5, 13] does not involve A branes. Instead, the strings break the UV gauge group

down to so(6) ' su(4).

These phenomena are recorded in figures 56, 57, and 58, but we show explicitly the string

junction pictures in figure 54 for the partitions µL = µR = [42] vs. the partitions µL =

µR = [5, 13]. In section 2.5.2, we will justify this surprising conclusion by an analysis of the

anomaly polynomials for these respective theories.
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SO(odd) Case

In general, SO(2N − 1) short quivers can be reinterpreted as SO(2N + 2) short quivers

deformed by a pair of nilpotent orbits. For example, suppose we start from an SO(7) short

quiver UV theory, written as:

[SO(7)] 1
so(9)

4
sp(1)

1
[Nf=1]

so(9)
4 1 [SO(7)]. (2.5.24)

This can be reinterpreted as starting from the following SO(10) UV theory:

[SO(10)]
sp(1)

1
so(10)

4
sp(1)

1
so(10)

4
sp(1)

1 [SO(10)], (2.5.25)

and applying the pair of nilpotent deformations [3, 17] – [3, 17].

In general, any SO(2N − p) quiver with deformations parametrized by the partitions µodd
L ,

µodd
R of 2N − p can be reinterpreted as an SO(2N) quiver with associated partitions µeven

L ,

µeven
R obtained by simply adding a “p” to the partitions µodd

L and µodd
R , respectively. For

instance, for the minimal choice p = 3 with µodd
L = [19], µodd

R = [7, 12], we can equivalently

express the theory as an SO(12) quiver with µeven
L = [3, 19], µeven

R = [7, 3, 12]. In this way,

the rules we developed for SO(2N) quivers above carry over straightforwardly to SO(2n−p)

quivers for p odd.

Sp Case

We now turn to quiver-like theories in which the flavor symmetries are a pair of Sp-type.

The first thing we should note is that no blow-downs can happen. As a result, there are

no “kissing” or “crumpled” configurations. The only constraint that needs to be imposed

comes from the Hanany-Witten moves:

NT ≥ Max{µ1
L, µ

1
R}, (2.5.26)

with NT the number of tensor multiplets in the UV theory.

146



The behavior of the Sp short quivers is then the same as for SO(2N), where the contri-

butions from each side can overlap, but without any of the complications found due to

small instanton transitions or anti-branes. Indeed, no anti-branes are necessary for Sp – Sp

quivers.

Mixed [G]–[G′] Case

It is interesting to consider mixed quivers where the left and right flavors are not equal.

The advantage of our analysis is that it straightforwardly generalizes to these cases. Indeed,

without loss of generality let M ≤ N , then

• Quivers with SU(M) – SU(N), M < N , flavor symmetries are obtained from par-

titions of N with µL = [νiL, N − M ] and µR = [µiR], where [νiL] is a partition of

M .

• Quivers with SO(2M) – SO(2N), M < N , flavor symmetries are similarly obtained

from partitions of 2N with µL = [νiL, (N − M)2] and µR = [µiR], where [νiL] is a

partition of 2M .

• Quivers with SO(even) – Sp flavors can be viewed as two SO(even) flavor symmetries

with the right most −1 curve decompactified. Small instanton transitions of the

interior −1 curves on the right-hand side of this quiver are allowed only if the resulting

base is given by 223 or 23.

• Any quiver involving SO(odd) flavor symmetries can be embedded inside an SO(even)

quiver, as seen in subsection 2.5.1. Thus, these reduce to the cases above.

2.5.2 Anomaly Matching for Short Quivers

In this subsection, we propose a method for computing the anomalies of short quivers with

classical algebras. We begin by introducing the notion of a “formal SO quiver.” We then

show how these can be useful in determining the true F-theory quiver of a 6D SCFT via

anomaly polynomial matching. In some cases of short quivers, there is a mismatch be-

tween the anomaly polynomial computed via the formal SO quiver and the quiver obtained
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through the string junction picture described previously. However, this mismatch seems to

take a universal form, indicating that the string junction approach may nonetheless give

the correct answer, even when there is a disagreement with the formal quiver approach. We

conclude the subsection with illustrative examples.

Formal SO theories

“Formal” SO quivers involve analytically continuing the gauge algebra SO(8 +m) or Sp(n)

so that m,n ≤ 0. This is only an intermediate step, and the motivation for introducing

such formal quiver is to help determine the actual F-theory quiver via anomaly polynomial

matching (see [313] for a detailed construction of such formal quivers). Here, we present a

brief review of how this is done.

We start from the long quiver case, where we make a comparison between a long SO(8)

quiver theory and its formal quiver theory and show that the the anomaly polynomials

between the two agree. The actual F-theory quiver is obtained by a [5, 3] deformation to

the left:

[5, 3] :
su(2)

2
g2
3 1

so(8)
4 · · · 1 [SO(8)] : [18] . (2.5.27)

On the other hand, we can also express this in terms of a formal quiver by allowing for

gauge groups with negative rank:

[5, 3] :
sp(−3)

1
so(4)

4
sp(−1)

1
so(7)

4 1
so(8)

4 · · · 1 [SO(8)] : [18] . (2.5.28)

If we truncate both of these theories, keeping only the part of the quiver to the left of the

“· · · ”, then their anomaly polynomials are both given by

I8 = 6337
168 c2(R)2 + 25

336c2(R)p1(T ) + 631
40320p1(T )2 − 79

1440p2(T ). (2.5.29)

In the case of the formal quiver, this anomaly polynomial computation is performed by

analytically continuing the formula for an Sp − SO quiver to negative gauge group rank

(see [313]).
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This example illustrates the utility of the formal quiver for anomaly matching. In our

short quiver theories, the actual F-theory quivers can be difficult to read off, whereas these

formal SO quivers are easy to determine. As a result, we can use them together with their

associated anomaly polynomials relation to check our proposal for the F-theory quiver, as

described below.

The general formula for formal quivers–both long and short–is similar to the formula (2.5.9)

for the SU case. Define the partition of the left and right nilpotent orbits of SO(2N) to be

µjL, µ
j
R and define their conjugate partitions ρjL, ρ

j
R. We have an alternating sequence of SO

and Sp gauge algebras on the full tensor branch. Indexing the gauge algebras by a parameter

m which starts with Sp(q1) on the left and continues to SO(p2), ... and terminating with

an Sp factor, we have the assignments:

SO(pm), pm = 2N −
N ′L∑

i=m+1
ρLi −

N ′R∑
j=NT−m+2

ρRj (m even) (2.5.30)

Sp(qm), qm = 1
2(2N −

N ′L∑
i=m+1

ρLi −
N ′R∑

j=NT−m+2
ρRj )− 4 (m odd) . (2.5.31)

Here, NT is the number of tensor multiplets in the UV F-theory description and N
′
L, N

′
R

are the lengths of left and right conjugate partitions, respectively.

Let us illustrate the construction of short quiver formal SO theories by starting with a

sufficiently long formal theory and then reducing the length. Consider the SO(8) theory with

[5, 3] and [32, 12] nilpotent deformations and four −4 curves, so that the pair of deformations

does not overlap:

[5, 3] :
sp(−3)

1
so(4)

4
sp(−1)

1
so(7)

4 1
so(8)

4 1
so(4)

4
sp(−1)

1 : [32, 12] . (2.5.32)

Now we decrease the length of the quiver. In each step, we start from a shorter UV theory

by removing one group of (−1,−4) curves. We get the following set of theories after each
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step:

[5, 3] :
sp(−3)

1
so(4)

4
sp(−1)

1
so(7)

4 1
so(4)

4
sp(−1)

1 : [32, 12] (2.5.33)

[5, 3] :
sp(−3)

1
so(4)

4
sp(−1)

1
so(5)

4
sp(−2)

1 : [32, 12] . (2.5.34)

We stop at this point, following the constraints from the Hanany-Witten moves. We see

that the formal gauge algebra goes down to the unphysical values of sp(−3) and so(2).

However, from such a quiver we may still extract its anomaly polynomial by analytically

continuing the formulae developed in the physical regime, sp(m),m > 0 and so(n), n ≥ 8.

In the long quiver case, the anomaly polynomial of the formal quiver exactly matches

that of the actual quiver [313], as in the example in (2.5.27)-(2.5.29). This serves as a

strong motivation for us to test the relationship between SO short quivers and their formal

counterparts via anomaly matching.

Anomaly Polynomial Matching and Correction Terms

For theories with long quivers, there is a well-defined prescription in the literature for

producing the F-theory quiver of a given formal type IIA quiver (see [313]). For short quiver

theories, however, the situation becomes much more complicated, and there is at present no

well-defined proposal in the literature. Nonetheless, the rules we have introduced in section

2.4 carry over to the case of short quivers, so we may check that these rules give the correct

answer by comparing the anomaly polynomials of the proposed short quiver theories to

those obtained from the formal quiver. This check has been done explicitly for all cases in

the catalogs 34 and 35 in Appendix B.3.

In general, we find that there is frequently a mismatch in the p1(T )2 and p2(T ) coefficients

of the anomaly polynomials computed via the formal quiver vs. the actual F-theory quiver.

However, this is not very concerning, as the mismatch can always be canceled by adding

an appropriate number of neutral hypermultiplets, each of which contributes (4p1(T )2 −

7p2(T ))/5760 to the anomaly polynomial. Indeed, such a mismatch in short quiver theories
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was previously noted in [241].

More concerning are the mismatches in the coefficients of the c2(R)2 coefficient and the

c2(R)p1(T ) coefficient (denoted α and β, respectively). These mismatches are relatively

rare, arising only in a smaller number of kissing cases (see tables 34 and 35 in Appendix B.3).

This could be an indication that these theories are sick and should be discarded. However,

we note that these mismatches seem to follow a universal set of rules, which indicates

that our proposed F-theory quiver may nonetheless represent an accurate translation of the

formal quiver.

Theories with mismatches always involve two anti-branes acting on a curve carrying an so

gauge algebra according to the rules in (2.4.6), and it depends on the size of the gauge

group. In particular, denoting the mismatch in the anomaly polynomial coefficients α and

β by ∆α, ∆β, respectively, we have:

1)

so(8) 2A→ g2 : (∆α,∆β) = (0, 0) (2.5.35)

(see figure 54a for an example)

2)

so(7) 2A→ su(3) : (∆α,∆β) = ( 1
24 ,

1
48) (2.5.36)

(see figure 53a for an example)

3)

so(6) ' su(4) 2A→ su(2) : (∆α,∆β) = ( 1
12 ,

1
24) (2.5.37)

(see figure 53b for an example)

4)

so(5) 2A→ su(1) : (∆α,∆β) = (1
6 ,

1
12) (2.5.38)
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