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Figure 1.2: Preadipocytes reside in the perivascular space. 

A multitude of cell types are found within adipose tissue, including fibroblasts, 
preadipocytes, adipocytes, immune cells, and vascular (endothelial and smooth muscle) 
cells. The prevailing model of adipogenesis suggests that cells committed to the 
adipocyte lineage are located within a perivascular niche. 
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PDGFRα 

Platelet derived growth factor alpha (PDGFRα) was identified in 2010 by two 

separate labs as a marker of cells with adipogenic capacity in regenerating muscle (Joe et 

al., 2010; Uezumi, Fukada, Yamamoto, Takeda, & Tsuchida, 2010). During glycerol 

induced muscle injury, there is a wave of adipogenesis from a cellular subpopulation 

called fibro-adipogenic progenitors (FAPs); notably, these cells are distinct from the 

muscle stem cells (Joe et al., 2010). In addition to PDGFRα, FAPs express both CD34 

and Sca-1, similar to the population of adipocyte progenitors identified by Rodeheffer et 

al in 2008 (Rodeheffer, 2008). 

Based on these similarities, Lee et al examined whether PDGFRα is a marker of 

adipocyte progenitor cells in visceral and subcutaneous white adipose depots (Y. Lee, 

Petkova, Mottillo, & Granneman, 2012). They employed two models of adipogenesis: 

β3-agonist stimulation to induce the formation of beige fat and high fat diet (HFD) to 

induce the formation of white fat. Brdu and Edu labeling studies of the visceral 

(epididymal) white adipose tissue revealed that in both models of adipogenesis, the 

proliferating cells were indeed PDGFRα+:CD34+:Sca1+ when examined by flow 

cytometry and immunofluorescence. PDGFRα+ cells are fibroblast like with multiple 

elongated processes touching components of the ECM and vasculature; although many 

are proximal to the vasculature, they are not explicitly perivascular, in contrast to the 

location of PDGFRβ cells (Y. H. Lee, Petkova, Mottillo, & Granneman, 2012; W. Tang 

et al., 2008). Lineage tracing with PdgfraCreER confirmed the contribution of these cells to 

white and beige fat under conditions of high fat diet and β3-adrenergic stimulation 
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respectively (Y. H. Lee et al., 2012). A separate group employed a PdgfraCre lineage 

reporter and showed tracing of PDGFRα+ cells to adipocytes during development and 

under normal unstimulated conditions (R. Berry & Rodeheffer, 2013). 

Multiple subsets of PDGFRα+ adipocyte progenitors have since been reported. 

CD44+/PDGFRα+ cells are recruited by macrophages to the sites dying adipocytes in the 

visceral white adipose tissue under conditions of HFD, β3 adrenergic stimulation, and 

physical injury (Y. Lee et al., 2015, 2013). These cells are highly proliferative and are 

presumed to be differentiating preadipocytes, primed to replace the dying fat cells. 

CD9High/PDGFRα+ cells are enriched in the visceral adipose tissue in mouse models of 

obesity. Compared to CD9Low/PDGFRα+ cells, CD9High/PDGFRα+ progenitors are less 

adipogenic and exhibit a pro-fibrotic myofibroblast phenotype (Marcelin et al., 2017). 

Indeed these cells may be responsible for the maladaptive remodeling of the adipose 

tissue ECM observed in obesity (Divoux et al., 2010b; Sun, Tordjman, Clément, & 

Scherer, 2013). Our lab has reported that a subset of PDGFRα+ cells with high 

expression of EBF2 are primed to become thermogenic beige adipocytes, while those 

with low expression are primed to become white adipocytes (W. Wang et al., 2014). This 

distinction is somewhat unsurprising as EBF2 is a transcription factor responsible for 

determining and maintaining the thermogenic program in adipocytes (Rajakumari et al., 

2013; Shapira et al., 2017; Stine et al., 2016). 

Overall PDGFRα has rapidly become an accepted general marker for adipocyte 

progenitor cells. It is clear however that considerable heterogeneity exists within this 
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larger population. Therefore, future work will be needed to determine how the various 

already identified and yet unidentified subsets relate to each other. 

PDGFRβ 

 Platelet derived growth factor beta (PDGFRβ) was among the first markers used 

in the identification of adipocyte progenitors (W. Tang et al., 2008). PDGFRβ cells are 

typically described vascular “mural cells” which reside along the outer walls of blood 

vessels (Hong et al., 2015; Vishvanath et al., 2016). Lineage tracing experiments have 

shown that cells marked by expression of Pdgfrb (PdgfrbrtTA-Tre-Cre, Rosa26mT/mG) 

generate new white adipocytes in the epididymal adipose tissue depot on high fat diet. 

Indeed in one study, after 8 weeks of HFD, 10% of adipocytes within the tissue were 

derived from newly differentiated Pdgfrb+ progenitors (Vishvanath et al., 2016). De novo 

adipocyte differentiation from these cells is important for protection from metabolic 

disease. Genetic deletion of Pparg in Pdgfrb+ progenitors leads reduced adipogenesis on 

HFD and worsened insulin sensitivity; overexpression of Pparg has the opposite effect 

(Shao, Vishvanath, et al., 2018). 

Furthermore, Pdgfrb+ progenitors (PdgfrbrtTA-Tre-Cre, Rosa26mT/mG) can generate 

beige adipocytes after prolonged (2 weeks) but not short bouts of cold exposure in the 

inguinal adipose tissue (Vishvanath et al., 2016). This is in contrast to Pdgfra+ 

progenitors (PdgfraCreER Rosa26mT/mG), which generate new beige adipocytes within days 

(Y. H. Lee et al., 2012; Q. A. Wang et al., 2013). Interestingly, several groups report the 

existence of cells which co-express PDGFRα and PDGFRβ in the gonadal and inguinal 

fat of mice (Hong et al., 2015; Shao, Vishvanath, et al., 2018; Vishvanath et al., 2016). 
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However, another report however fails to find any PDGFRα+ cells which are also 

positive for PDGFRβ in these depots (Y. H. Lee et al., 2012). Therefore, the overlap 

between the function and identity of PDGFRα+ and PDGFRβ+ cells remains an open 

question for the field. 

Lin-:CD29+:CD34+:Sca1+:CD24+  

 Variations on the “Lin-:CD29+:CD34+:SCA1+:CD24+” FACS sorting strategy to 

isolate adipocyte progenitors have been widely reported in the literature(R. Berry et al., 

2013; Hong et al., 2015). The most common change is to omit CD24 and/or CD29 from 

the isolation strategy. For example, Lin-:CD34+ cells in human adipose tissue have been 

described as adipogenic and residing in a perivascular location (Traktuev et al., 2008; 

Zimmerlin et al., 2010). Another group has shown that Lin-:Sca1+:CD34+ cells derived 

from mouse adipose tissue are capable of adipogenesis upon transplantation (Joe, Lin, 

Even, Vogl, & Rossi, 2009). 

Nearly all Lin-:CD29+:CD34+:Sca1+ cells are also PDGFRα+ (R. Berry & 

Rodeheffer, 2013). The addition of CD24 to this sorting strategy enables separation of 

these cells into two pools with different biological activities. Compared CD24+ cells, 

CD24- cells are less proliferative and show higher expression of adipocyte identity genes 

such as Pparg, Lpl, AdipoQ, and Fabp4 (R. Berry & Rodeheffer, 2013). Transplantation 

studies and more descriptive analyses indicate that CD24+ cells directly produce CD24- 

cells during the course of adipogenesis in both visceral and subcutaneous depots (R. 

Berry & Rodeheffer, 2013; Jeffery et al., 2015, 2016).  
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PREF1 

 Preadipocyte factor 1 (Pref1), also known as Dlk1, is an epidermal growth factor 

(EGF) like protein that inhibits adipocyte differentiation in a paracrine manner (Hudak & 

Sul, 2013). PREF1 is a transmembrane protein whose expression decreases throughout 

the course of differentiation in the 3T3-L1 model of in vitro adipogenesis (Smas, Chen, & 

Sul, 1997; Smas & Sul, 1993). It is cleaved by TNFα converting enzyme to release a 

soluble form into the extracellular space. The soluble active form suppresses 

adipogenesis via upregulation of SOX9 which suppresses transcription of C/EBPs, a 

family of transcription factors which are critical for adipogenesis (Hudak & Sul, 2013). 

 Pref1 has the components of an ideal marker for adipocyte progenitor cells as it 

inhibits adipogenesis and is lost during differentiation. It has primarily been described as 

a marker of very early adipocyte progenitors during embryonic development (Hudak et 

al., 2014a). Lineage tracing using a Pref1 reporter mouse indicates that Pref1+ cells 

appear as early as E10.5 during mouse development and go on to develop into adipocytes 

in the inguinal fat. Pref1+ are also detected in the visceral adipose tissue which develops 

later. Finally, ablation of Pref1+ cells using diphtheria toxin leads to lipodystrophy, 

indicating that these cells are part of the adipocyte cellular lineage. 

PPARγ 

 PPARγ is required for adipogenesis therefore early studies attempted to identify 

adipocyte progenitor cells based on their expression of this key transcription factor (W. 

Tang et al., 2008). Cells expressing Pparg are found along the adipose tissue vasculature 

and co-express PDGFRβ (W. Tang et al., 2008). The fact that Pparg is a transcription 
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factor (and therefore intracellular) and highly expressed in adipocytes have limited its 

utility as a lineage tracing reporter. 

Nevertheless, one interesting study used a Pparg lineage tracing reporter 

(PpargtTA-Tre-Cre R26RLacZ) during early development to demonstrate that distinct 

progenitor cells are responsible for adipose tissue development versus maintenance 

(Jiang, Berry, Tang, & Graff, 2014). Using this doxycycline suppressible system, Pparg+ 

(LacZ+) cells are detectable in the inguinal WAT as early as E10.5. However, 

suppression of the reporter at this early stage leads to an unlabeled fat pad at birth. 

Deletion of Pparg in Pparg+ cells (PpargtTA-Tre-Cre/fl ) at E10.5 leads to normal adipose 

tissue at birth, but a progressive lipodystrophy with ageing. Combined these results 

indicate that two separate pools of progenitors regulate the initial development of adipose 

tissue (organogenesis) and maintenance of adipose tissue in adulthood (Jiang et al., 

2014). 

ZFP423 

 Zinc finger protein (ZFP) 423 is a transcription factor that is enriched in 

fibroblasts from adipose tissue compared to fibroblasts from non adipogenic tissues 

(Gupta et al., 2010). It has been reported as a marker of “committed preadipocytes” based 

on one study employing a Zfp423-GFP reporter mouse. Subsequent work has indicated 

that there is substantial overlap between Zfp423-GFP+ cells and PDGFRβ+ cells (Gupta 

et al., 2012; Vishvanath et al., 2016). 
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 The most common incorrect variant is to plate different cellular populations at 

low density and grow them to confluence for several days before initiating adipogenic 

differentiation. This method is often employed due to the low yield of adipocyte 

progenitor cells, especially when using FACS to isolate distinct populations. Importantly, 

this method does not directly assay adipogenic potential but rather measures the ability to 

undergo adipogenesis, after many rounds of cell divison. A second common error is to 

quantify the total amount of lipid without accounting for total cell number. Wells with 

more cells can have much lower per-cell rates of adipogenesis but similar overall lipid 

accumulation. The conflation of in vitro adipogenic and proliferative potential may be 

responsible for seemingly inconsistent reports in the literature and future work should be 

careful to avoid this pitfall. 

 

5.6 Conclusion 
 

Overall, these studies define a developmental hierarchy of adipose progenitors 

consisting of DPP4+ interstitial progenitors that give rise to committed ICAM1+ and 

CD142+ preadipocytes, which are poised to differentiate into mature adipocytes. The 

careful dissection of the lineage relationships between adipocyte progenitor cells 

presented here represents an important advance in our understanding of adipose tissue 

biology. We speculate that targeting one or more of these cell populations may be 

beneficial for promoting adaptive hyperplastic adipose growth to ameliorate metabolic 

disease. A key finding from this work is that adipose progenitor cells reside in the 



162 
 

reticular interstitium, a recently appreciated network of collagen and elastin fibers that 

encases many organs, including adipose depots. Our results raise the possibility that 

DPP4+ cells, in addition to serving as progenitor cells for adipocytes in fat depots, may 

play important roles in the functioning of other tissues. 
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Materials and Methods 
 

Human Adipose Tissue Samples 

All human adipose tissue samples were obtained from living donors undergoing cosmetic 

surgery. Tissue samples consisted of 1-10 kg intact blocks of discarded tissue, including 

skin and subcutaneous adipose, from procedures to remove excess skin and adipose tissue 

from the abdomen and flanks. Collection of tissue and processing was initiated within 1-3 

hours of removal from the patient. This work was performed under the approval of IRB 

#812150 and IRB #824825. Human subject demographics are outlined in Fig. S22. 

Isolation of Stromal Vascular Cells from Human Subcutaneous Adipose 

The skin and cauterized edges of human tissue samples were removed to yield an intact 

block of subcutaneous fat which was unmanipulated by the surgical procedure. 300-500g 

of tissue was manually minced and digested with Collagenase D (0.75 unit/mL; Roche) 

and Dispase II (1.2 units/ml Roche) in DMEM/F12 containing 0.4% fatty acid free 

bovine serum albumin (Sigma) at 37˚C with agitation for 45 min and shaking for 10 sec 

at 15 min intervals. Digestion was performed at a ratio of 1g of tissue to 1mL of digestion 

medium. The digestion was quenched with DMEM containing 10% FBS and the 

dissociated cells were filtered twice through a single layer of gauze to remove large 

undigested particles followed by centrifugation at 400 x g for 5 minutes at RT. The 

resulting supernatant containing mature adipocytes was aspirated and the pellet, 

consisting of stromal vascular cells, was resuspended and passed through a 100uM filter 
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followed by centrifugation at 400 x g for 5 minutes at RT. Cells were re-suspended in red 

blood cell lysis buffer (Biolegend) for 5 minutes at room temperature then quenched in 

DMEM containing 10% FBS. Cells were then passed through a 40 μM filter and 

collected by centrifugation at 400 x g for 5 minutes. Cells were recovered in FACS buffer 

(HBSS containing 3% FBS, Fisher) and kept on ice for the duration of processing.  

Animals 

C57BL/6J WT (Stock #000664), and C57BL/6J:ROSAmT/mG (Stock #007676) mouse 

lines were obtained from Jackson Laboratories. CD1 WT (Stock #022) were obtained 

from Charles River. 129SVE (Stock #129S6/SvEvTac) mice were obtained from 

Taconic. Diet-induced obese C57BL/6J mice (Stock #380050) and control animals (Stock 

#380056) were obtained from Jackson Laboratories and maintained on their respective 

diets until harvest. All animal procedures were performed under the guidance of the 

University of Pennsylvania Institutional Animal Care and Use Committee. 

Isolation of Stromal Vascular Cells from Mouse Adipose  

Inguinal and axillary subcutaneous white adipose depots were surgically removed from 

wild type mice and processed for stromal vascular cell enrichment. Briefly, adipose 

tissues were manually minced and digested with Collagenase D (1.5 unit/mL; Roche) and 

Dispase II (2.4 units/ml Roche) in DMEM/F12 containing 0.8% fatty acid free bovine 

serum albumin (Sigma) at 37˚C with agitation for 45 min and vortexing for 10 sec at 15 

min intervals. The digestion was quenched with DMEM/F12 containing 10% FBS and 

the dissociated cells were passed through a 100 μM filter, followed by centrifugation at 
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400 x g for 5 minutes. The resulting supernatant containing mature adipocytes was 

aspirated and the pellet, consisting of stromal vascular cells, was re-suspended in red 

blood cell lysis buffer (Biolegend) for 5 minutes at room temperature then quenched in 

DMEM/F12 containing 10% FBS. Cells were then passed through a 40 μM filter and 

collected by centrifugation at 400 x g for 5 minutes. Cells were recovered in FACS buffer 

(HBSS containing 3% FBS, Fisher).  

Fluorescence-Activated Cell Sorting (FACS) 

Mouse: Stromal vascular cells from the subcutaneous adipose of ~20-30 mice (age p10-

p20) or 10-20 mice (age 8 weeks or older) were pooled and re-suspended in FACS buffer 

for incubation with the following antibodies for 30min at 4˚C: CD26(DPP4)-FITC 

(Biolegend, San Diego, CA, cat#137806 1:200); anti-mouse ICAM1-PE/Cy7 (Biolegend 

cat#116122 1:100), anti-mouse CD45-APC/Cy7 (Biolegend; cat#103116 1:1000), anti-

mouse CD31-APC-Fire (Biolegend cat#102528 1:1000), anti-mouse CD142 1:100 (Sino 

Biological cat#50413-R001), pre-conjugated with Biotium Mix-n-Stain CF647 (Sigma 

cat#MX647S100). DAPI (Roche cat#10236276001 1:10000) was added for the final 5 

minutes. The cells were washed three times with FACS buffer to remove unbound 

antibodies. The cells were sorted using a BD FACS Aria cell sorter (BD Biosciences) 

equipped with a 100 micron nozzle and the following lasers-filters: DAPI: 405-450/50; 

FITC: 488-515/20; mTomato: 532-610/20; PE/Cy7: 532-780/60; CF647: 640-660/20; 

APC/Cy7 and APC-Fire 640-780/60. All compensation was performed at the time of 

acquisition in Diva software using compensation beads (BioLegend cat# A10497) for 

single color staining and SVCs for negative staining and fluorescence (DAPI, mTomato). 
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Human: Stromal vascular cells were re-suspended in FACS buffer for incubation with the 

following antibodies for 60min at 4˚C: CD26(DPP4)-FITC (Biolegend, San Diego, CA, 

cat# 302704 1:100); anti-mouse ICAM1-PE/Cy7 (Biolegend cat# 353116 1:100), anti-

mouse CD45-APC/Cy7 (Biolegend; cat# 368516 1:100), anti-mouse CD31-APC/Cy7 

(Biolegend cat#303120 1:100), anti-mouse CD142-APC (Biolegend cat# 365206 1:100). 

DAPI (Roche cat#10236276001 1:10000) was added for the final 5 minutes. The cells 

were washed three times with FACS buffer to remove unbound antibodies. The cells 

were sorted using a BD FACS Aria cell sorter (BD Biosciences) equipped with a 100 

micron nozzle and the following lasers-filters: DAPI: 405-450/50; FITC: 488-515/20; 

PE/Cy7: 532-780/40; APC: 640-660/20; APC/Cy7 640-780/60. All compensation was 

performed at the time of acquisition in Diva software using compensation beads 

(BioLegend cat# A10497) for single color staining and SVCs for negative staining and 

fluorescence (DAPI).  

Single-Cell RNA-sequencing using 10x Genomics Chromium Platform: 

For both mouse and human studies stromal vascular cells were isolated and flow sorted 

with gating to isolate single cells away from debris, doublets, and dead cells. For the p12 

pups (pooled male and female C57BL/6) and human single cell study, the cells were 

further gated against CD45 to exclude leukocytes. For the adult mouse thermoneutral 

(pooled male 129S6/SvEvTac) sample CD45 cells were segregated and remixed with the 

SVC cells at a ratio of approximately 20% of the total cells. The sorted cells were loaded 

onto a GemCode instrument (10x Genomics, Pleasanton, CA, USA) to generate single-

cell barcoded droplets (GEMs) according to the manufacture’s protocol using the 10x 
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Single Cell 3’ v2 chemistry. The resulting libraries were sequenced on an Illumina 

HiSeq2500 instrument with the HiSeq Rapid SBS kit. The resulting reads were aligned 

and gene level unique molecular identifier (UMI) counts obtain using the Cell Ranger 

(Pipeline).  

The Cell Ranger Single Cell Software Suite v.2.0.1 (mouse studies) or v.3.0.1 

(human studies) was used to perform sample de-multiplexing, alignment, filtering, and 

UMI counting (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger). Clustering and gene expression 

were visualized with the Seurat package (version 3.0, https://satijalab.org/seurat/) on R 

Studio (https://www.rstudio.com). Cells were first filtered to have > 500 detected genes 

and less than 5% of total UMIs mapping to the mitochondrial genome. Clusters with very 

few cells were filtered before downstream analysis. Data was scaled to mitigate the 

effects of the following variables number of genes detected per cell, percent 

mitochondrial reads and cell cycle phase. Dimensionality reduction was performed using 

the T-stochastic Neighboring Embedding method (t-SNE) using Seurat. Differential gene 

expression analysis between clusters was performed using the Seurat function 

FindMarkers using the wilcox test. Violin plots, heatmap and individual tSNE plots for 

the given genes were generated using the Seurat toolkit ‘VlnPlot’, ‘DoHeatmap’ and 

‘FeaturePlot’ functions respectively. 

 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://www.rstudio.com/
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Pseudotime Analysis 

Pseudotemporal analysis was performed on a filtered subset of clusters (Groups #1-4 and 

Adipocytes) from the p12 pups subcutaneous SVF using the Monocle R package 

(http://cole-trapnell-lab.github.io/monocle-release/). Ordering genes were selected using 

a cutoff of expression in at least 10 cells and a combination of inter-cluster differential 

expression and dispersion with q-value cutoff of <1e-10, which produced list of 1027 

genes. A split heatmap was generated from selected genes showing significant change 

through pseudotime, high differential expression, or known biologic identity using the 

Monocle function ‘plot_genes_branched_heatmap’ at ‘branch_point’ 1. 

RNA-Seq Library Preparation and Analysis 

Subcutaneous SVCs from pooled C57BL/6 male and femalep10-16 pups were sorted as 

described above into DPP4+ and ICAM1+ populations (Figure 2, GO analysis) or 

DPP4+, ICAM1+, and CD142+ (Figure S10) and collected in TRIzol (Invitrogen). Total 

RNA was isolated using the RNeasy Micro Kit (Qiagen). Three independent biologic 

replicates were collected for each population. RNA concentration and quality were 

assessed using Nanodrop2000, Qbit, and Bioanalyzer RNA 2100 (Agilent; Santa Clara, 

CA). All samples had RNA integrity number (RIN) greater than 7. Library preparation 

and cDNA sequencing was performed by Novogene using paired-end 150bp reads (20 

million reads per sample). FASTQ files were aligned using STAR and differential gene 

expression was analyzed using the R package DESeq2. 

http://cole-trapnell-lab.github.io/monocle-release/
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Cell Culture and Differentiation 

Mouse Studies: DPP4+, ICAM1+ and CD142+ populations were FACS-purified and 

plated on Corning CellBind 384, 96, 48, or 24 well plates (Sigma-Aldrich) and cultured 

in DMEM/F12 containing 10% FBS and 50 ng/mL Primocin (Invivogen, cat# ant-pm-1). 

The cells were incubated for 24-48 hours to facilitate attachment prior to induction of 

either adipogenic or osteogenic differentiation. For adipogenic differentiation cells were 

plated at near confluence after sorting to ensure the same number of cells per well for 

each cell type at the start of adipogenic induction. Adipogenic differentiation was carried 

out in DMEM/F12 + 10% FBS and 50 ng/mL Primocin with the addition of either A) full 

adipogenic cocktail induction (20 nM insulin, 1 nM T3, 1 M Dexamethasone (Sigma, 

cat# D4902), 0.5uM Isobutylmethylxanthine (Sigma, I7018), 125 nM Indomethacin) for 

2 days followed by transfer to adipogenic maintenance media (20 nM Insulin, 1 nM T3) 

or B) minimal adipogenic cocktail (20 nM Insulin). Media changes were performed every 

2 days and cells were analyzed for all experiments within 4-6 days of induction of 

differentiation. Osteogenic differentiation was performed using the MesenCult 

Osteogenic Stimulatory Kit (Stem Cell Technologies, cat#05504). Medium was changed 

every 2 days and the cells were analyzed after 8 days of differentiation.  

 

Human Studies: DPP4+, ICAM1+ and CD142+ populations were FACS-purified and 

plated on Corning CellBind 384, 96, or 48 well plates (Sigma-Aldrich) and first cultured 

in PM-1 media (Zenbio, cat# PM-1) supplemented with recombinant 1 nM FGF2 
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(Invitrogen, PHG0261) and 50 ng/mL Primocin. Cells were plated at near confluence and 

incubated for 48-72 hours to facilitate attachment prior to induction of adipogenic 

differentiation. Adipogenic differentiation was carried out in DM-1 media (Zenbio, cat# 

DM-1) + 3% FBS and 50 ng/mL Primocin with the addition of either A) full adipogenic 

cocktail induction (20 nM insulin, 1 nM T3, 1 M Dexamethasone (Sigma, cat# D4902), 

0.5uM Isobutylmethylxanthine (Sigma, I7018), 1nM Rosiglitazone maleate (Alexis 

Biochemicals, 350-103-G001) for 7 days followed by transfer to adipogenic maintenance 

media (20 nM Insulin, 1 nM T3) or B) minimal adipogenic cocktail (20 nM Insulin, 1nM 

Rosiglitazone) throughout. Medium was changed every 7 days and the cells were 

analyzed after 14-18 days of differentiation. 

Mouse and Human: In some experiments, cultures were treated with 10 ng/mL of 

recombinant TGFβ1 (R&D Systems, cat#240-B-002) or the TGFβ inhibitor (10 μM) 

SB431552 (R&D, cat#1614) throughout differentiation. TGFβ was added at the same 

time as adipogenic induction occurred while SB431552 was added to cells within 24 

hours of plating. The cells were incubated in a humidified incubator at 37˚C and 5% 

CO2. 

Histology 

Tissues were fixed with 2-4% paraformaldehyde via transcardiac perfusion, followed by 

overnight fixation of dissected adipose pads. The tissues were subsequently dehydrated 

through a series of ethanol washes then embedded in paraffin for thin sectioning. For 

cross-sectional imaging of the inguinal adipose depots, a full-thickness section of the 
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mouse flank (including the skin and adipose pad) were fixed and embedded in paraffin, 

then rotated and sectioned in the cross-sectional orientation. Immunohistochemistry was 

performed following heat antigen retrieval methods and stained with the following 

antibodies: anti-RFP (rabbit, Rockland 1:500), anti-DPP4 (goat, R&D 1:250), anti-Pref1 

(rabbit R&D), anti-Anxa3 (rabbit, Biorbyt), anti-Pi16 (rabbit, mybiosource). 

Transplantation 

DPP4+, ICAM1+ and CD142+ populations were purified by FACS from the 

subcutaneous adipose of pooled male and female p10-p16 ROSAmT/mG pups (donor cells). 

mTomato+ donor cells were washed with FACS buffer twice, then concentrated by 

centrifugation. ~50,000 cells were mixed 1:1 with Matrigel (Phenol Free & Growth 

Factor Reduced (GFR), Corning) on ice. Wild type C57BL/6 mouse pups age 8-12 days 

were anesthetized using an isoflurane nosecone, abdominal hair was chemically removed 

prior to creation of an approximately 5 mm midline Y-shaped cutaneous incision to 

expose the bilateral inguinal adipose pads. Donor cell/Matrigel slurry was injected along 

the edge of the inguinal fat pad in several depots. The recipient animals were closed with 

6-0 polypropylene suture and placed back with their litter. After the indicated time, donor 

cells were harvested from the recipient animals by dissection of the entire inguinal 

adipose pad, followed by the FACS procedures as described above. Biological replicates 

here mean separate pools of donor cells transplanted into separate individual recipient 

mice. 
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Quantification of adipocyte differentiation and cell proliferation 

Adipogenesis was assessed by Biodipy 493/503 (Invitrogen, cat#D3922) staining for 

lipid droplet accumulation and Hoechst 33342 (Thermo Fisher, cat#62249) staining for 

nuclei number at 4-6 days post induction (mouse) and 14-18 days post induction (human) 

in individual wells of a 384 well plate (Sigma-Aldrich, cat# CLS3770). The cells were 

imaged on a Keyence inverted fluorescent microscope (BZX-710) using DAPI (Ex 

360/40, Em 460/50, Keyence, OP-87762) and GFP (Ex 470/40, Em 525/50, Keyence, 

OP-87763) filters. Individual wells were imaged in their entirety at 20x to capture a 7x7 

tiled/stitched grid (mouse studies) or at 10x to capture a 5x5 tiled/stitched grid (human 

studies).  

Image Calculations: Tiling and stitching was performed with Keyence BZ-X 

Viewer Software. Image quantification was performed in ImageJ as shown in Fig. S23. 

Images were split into component channels. Nuclei (blue channel) were quantified by 

applying Gaussian Blur (3 Sigma), thresholding, watershed calculation for segmentation, 

and counting. Lipid accumulation was quantified by applying Gaussian Blur (2 Sigma), 

thresholding, and quantification of total area above threshold. The level of adipogenesis, 

called Adipogenic Index, was assessed by dividing total lipid area by total number of 

nuclei and represents a number with arbitrary units for comparing absolute levels of 

adipogenesis. Relative adipogenesis was calculated as the ratio of the adipogenic index in 

treatment/control samples; here the control is the untreated sample from the same cell 

type and biological replicate (e.x. ICAM1+ TGFβ Biological Replicate A / ICAM1+ 
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Control Biological Replicate A). This represents a number with arbitrary units for 

comparing fold induction or suppression compared to baseline.  

Statistics: All image calculations were first performed on a per well basis with the 

same thresholds applied to all wells within a single experiment. Once thresholds were 

determined, calculations were performed on all images in an automated manner. The 

adipogenic index for biological replicates was calculated by averaging the results from 

multiple technical replicates (2-8 wells per cell type, per treatment, per biological 

replicate). Here independent wells (i.e. derived from the same biological and FACS pool 

but plated into separate wells of the same plate) are considered technical replicates. 

Statistical testing was performed on biological replicates. 

Cellular proliferation was assessed by plating FACS isolated DPP4+, ICAM1+ or 

CD142+ cells into a 96-well plate. For mouse studies cells were plated at 3600 cells/well 

(Figure 2D), or 2000 cells/well (Figure 2H) in DMEM/F12 + 10% FBS and Primocin. 

For human studies cells were plated at 5,000 cells/well in PM-1 media (Zenbio, cat# PM-

1) supplemented with recombinant 1 nM FGF2 (Invitrogen, PHG0261) and 50 ng/mL 

Primocin. For both human and mouse studies: total nuclear content was measured for 

each well using CyQuant Direct Cell Proliferation Assay (Thermo Fisher cat#C35011). 

Where indicated, TGFβ1 (10ng/mL) and SB431542 (10uM) treatment were initiated after 

measuring the first timepoint. Proliferation data is displayed either as a curve showing 

data from independent wells from a single representative biological replicate (2D, 2H, 

S15C) or as a bar graph from multiple biological replicates showing relative proliferation 

rates. Relative proliferation rates were calculated for the human data in order to provide a 
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comparable baseline as follows: 1) the mean slope of DPP4, ICAM1, and CD142 cells 

was determined and called the “Patient Baseline”. 2) data are displayed as Cell Type 

Slope/Patient Baseline. Ex (DPP4 cells Slope Patient 1) / (Average Slope of DPP4, 

ICAM1, and CD142 from Patient 1). 

RT- qPCR 

Total RNA was isolated using the RNeasy Micro Kit (Qiagen) and quantified using a 

NanoDrop. Five-hundred nanograms to 1 µg of RNA was reverse-transcribed using the 

high-capacity cDNA synthesis kit (Applied Biosystems) followed by real-time PCR with 

SYBR Green master mix (Applied Biosystems) on a 7900 HT machine (Applied 

Biosystems). Tata-binding protein (Tbp) was used as an internal normalization control. 

Data are presented as fold change relative to control. For 2 For figures 2J and 2L, data are 

calculated as treatment/control where the control is the untreated sample from the same 

cell type and biological replicate (e.x. ICAM1+TGFβ Biological Replicate A / ICAM1+ 

Control Biological Replicate A). Data were analyzed using ANOVA followed by 

multiple comparisons unless otherwise indicated.  

Statistical Methods 

Statistical methods were not used to predetermine sample size. The experiments 

were not randomized and investigators were not blinded in experiments. All p values 

are reported with adjustment for multiple comparisons. Most statistical tests were 

performed comparing DPP4+, ICAM1+, and CD142+ cells and therefore used an 

ANOVA followed by multiple comparisons. Pairwise comparisons were determined a 
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priori, were two sided, and were performed only if the ANOVA was significant, using 

either the Holm-Sidak or Tukey HSD. Samples (from each human donor or pool of mice) 

generates cells from all three populations (DPP4+, ICAM1+, and CD142+). Therefore, 2 

Way ANOVA or Repeated Measures ANOVA were employed to account for the 

matched nature of these data. For all parametric tests, QQ and residual plots were 

generated to test for deviation from the ANOVA assumptions of normally distributed 

residuals with equal variance. In cases with unequal variance between samples the 

Brown-Forsythe correction (One Way ANOVA) or Geisser-Greenhouse correction 

(Repeated Measures ANOVA) was used. Where ANOVA would be the appropriate 

statistical test but the data were unbalanced, the Mixed Effects Model for statistical 

testing was used instead. For Figure S14 multiple t-tests followed by Holm correction 

was performed instead of ANOVA. 

Where indicated, biological replicates represent independent samples; i.e. cells 

derived from different human donors or from separate pools of mice. For proliferation 

assays, cells from one human donor or pool of mice were plated into multiple wells, and 

this was repeated across multiple individuals or pools of mice.  
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