
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2019 

Linking Functional Brain Networks To Psychopathology And Linking Functional Brain Networks To Psychopathology And 

Beyond Beyond 

Huchuan Xia 
University of Pennsylvania, cedrichxia@gmail.com 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Behavioral Neurobiology Commons, and the Biostatistics Commons 

Recommended Citation Recommended Citation 
Xia, Huchuan, "Linking Functional Brain Networks To Psychopathology And Beyond" (2019). Publicly 
Accessible Penn Dissertations. 3540. 
https://repository.upenn.edu/edissertations/3540 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3540 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/56?utm_source=repository.upenn.edu%2Fedissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=repository.upenn.edu%2Fedissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3540?utm_source=repository.upenn.edu%2Fedissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3540
mailto:repository@pobox.upenn.edu


Linking Functional Brain Networks To Psychopathology And Beyond Linking Functional Brain Networks To Psychopathology And Beyond 

Abstract Abstract 
Neurobiological abnormalities associated with neuropsychiatric disorders do not map well to existing 
diagnostic categories. High co-morbidity suggests dimensional circuit-level abnormalities that cross 
diagnoses. As neuropsychiatric disorders are increasingly reconceptualized as disorders of brain 
development, deviations from normative brain network reconfiguration during development are 
hypothesized to underlie many illness that arise in young adulthood. In this dissertation, we first applied 
recent advances in machine learning to a large imaging dataset of youth (n=999) to delineate brain-
guided dimensions of psychopathology across clinical diagnostic boundaries. Specifically, using sparse 
Canonical Correlation Analysis, an unsupervised learning method that seeks to capture sources of 
variation common to two high-dimensional datasets, we discovered four linked dimensions of 
psychopathology and connectivity in functional brain networks, namely, mood, psychosis, fear, and 
externalizing behavior. While each dimension exhibited an unique pattern of functional brain connectivity, 
loss of network segregation between the default mode and executive networks emerged as a shared 
connectopathy common across four dimensions of psychopathology. 

Building upon this work, in the second part of the dissertation, we designed, implemented, and deployed a 
new penalized statistical learning approach, Multi-Scale Network Regression (MSNR), to study brain 
network connectivity and a wide variety of phenotypes, beyond psychopathology. MSNR explicitly 
respects both edge- and community-level information by assuming a low rank and sparse structure, both 
encouraging less complex and more interpretably modeling. Capitalizing on a large neuroimaging cohort 
(n=1,051), we demonstrated that MSNR recapitulated interpretably and statistically significant 
associations between functional connectivity patterns with brain development, sex differences, and 
motion-related artifacts. Compared to common single-scale approaches, MSNR achieved a balance 
between prediction performance and model complexity, with improved interpretability. 

Together, integrating recent advances in multiple disciplines across machine learning, network science, 
developmental neuroscience, and psychiatry, this body of work fits into the broader context of 
computational psychiatry, where there is intense interest in the quest of delineating brain network 
patterns associated with psychopathology, among a diverse range of phenotypes. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Neuroscience 

First Advisor First Advisor 
Theodore D. Satterthwaite 

Second Advisor Second Advisor 
Danielle S. Bassett 

Keywords Keywords 
Biostatistics, Functional Connectivity, Machine Learning, Network Neuroscience, Psychopathology, RDoC 



Subject Categories Subject Categories 
Behavioral Neurobiology | Biostatistics | Neuroscience and Neurobiology 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3540 

https://repository.upenn.edu/edissertations/3540


 

 

LINKING FUNCTIONAL BRAIN NETWORKS TO PSYCHOPATHOLOGY AND BEYOND 

Huchuan Xia 

A DISSERTATION 

in 

Neuroscience 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2019 

 

Supervisor of Dissertation     Co-Supervisor of Dissertation  

 

______________________________      ____________________ 

Theodore D. Satterthwaite, M.D., M.A.                   Danielle S. Bassett, Ph.D. 

Assistant Professor of Psychiatry     Associate Professor of Bioengineering,  

           Electrical & Systems Engineering, Psychiatry, 

       Physics and Astronomy, and Neurology 

 

Graduate Group Chairperson 

 

__________________ 

Joshua I. Gold, Ph.D. 

Professor of Neuroscience 

Dissertation Committee 

Geoffrey K. Aguirre, M.D., Ph.D., Professor of Neurology 

Frances E. Jensen, M.D., Professor of Neurology 

Lyle H. Ungar, Ph.D., Professor of Computer and Information Science 

Russell T. Shinohara, Ph.D., Associate Professor of Biostatistics, Epidemiology, and Informatics 



 

 

 

 

 

 

 

 

LINKING FUNCTIONAL BRAIN NETWORKS TO PSYCHOPATHOLOGY AND BEYOND 

COPYRIGHT 

2019 

HUCHUAN XIA 

 

This work is licensed under the  

Creative Commons Attribution- 

NonCommercial-ShareAlike 3.0 

License 

 

To view a copy of this license, visit 

https://creativecommons.org/licenses/by-nc-sa/3.0/us/  



iii 

 

 

 

 

 

 

This dissertation is dedicated to 

my parents, who courageously green-lighted and selflessly supported my idea of 
coming to America for higher education; 

my three living grandparents, who always silently cheered me on, even when I 
didn’t call them as much as I should have; 

and the loving memory of my grandmother and my aunt, who passed away 
during my graduate studies. Both teachers at an elementary school in rural 

China, they taught me some of the first words and numbers I know. 

 

 

M
5��9�J0�@F 

+C>8� ���/��*
'1D�-,
+7G�B"C)<� 

+C���??����$E+:3&&F��NAK����=((�F+�;� 

�+L�4O��C�!�� �����	6C#".%���2+C�IH%� 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGMENT 

I am incredibly grateful to my adviser, Ted Satterthwaite, who is among 

the most outstanding scientists, effective teachers, and compassionate mentors I 

have ever worked with. As an aspiring physician-scientist who is working towards 

a career in translational psychiatry, I see Ted as my most influential role model. I 

owe much debt for the progress in my research and achievement to Ted’s 

selflessness in giving his time and advice, and allowing plenty of room for 

flexibility and individual development. I also have enormous gratitude for my co-

adviser, Dani Bassett, whose wisdom, insights, and genuine warmth have 

benefited me so much throughout my thesis work. Furthermore, I would like to 

express my sincere gratitude to Zongming Ma, whose crucial collaboration made 

much of this dissertation possible. I am very much thankful to the members of my 

thesis committee, including Geoffrey Aguirre, Francis Jensen, Lyle Ungar, and 

Taki Shinohara, for always making the time to offer me their invaluable feedback 

and constructive input.  Finally, I would like to thank everyone at the Brain 

Behavior Laboratory for providing me enrichment in and outside of the lab, the 

Neuroscience Graduate Group, particularly Josh Gold, Yale Cohen, and 

Christine Clay, for helping me navigate administrative challenges,  the Medical 

Scientist Training Program Office for always keeping me on track, Deutsche 

Forschungsgemeinschaft for making my dream of studying abroad possible, and 

the Blavatnik Family Foundation for financially supporting my last year of 

dissertation. 

 



v 

 

ABSTRACT 

 

LINKING FUNCTIONAL BRAIN NETWORKS  

TO PSYCHOPATHOLOGY AND BEYOND 

Huchuan Xia 

Theodore D. Satterthwaite, M.D.,M.A., Danielle S. Bassett, Ph.D. 

Neurobiological abnormalities associated with neuropsychiatric disorders 

do not map well to existing diagnostic categories. High co-morbidity suggests 

dimensional circuit-level abnormalities that cross diagnoses. As neuropsychiatric 

disorders are increasingly reconceptualized as disorders of brain development, 

deviations from normative brain network reconfiguration during development are 

hypothesized to underlie many illness that arise in young adulthood. In this 

dissertation, we first applied recent advances in machine learning to a large 

imaging dataset of youth (n=999) to delineate brain-guided dimensions of 

psychopathology across clinical diagnostic boundaries. Specifically, using sparse 

Canonical Correlation Analysis, an unsupervised learning method that seeks to 

capture sources of variation common to two high-dimensional datasets, we 

discovered four linked dimensions of psychopathology and connectivity in 

functional brain networks, namely, mood, psychosis, fear, and externalizing 

behavior. While each dimension exhibited an unique pattern of functional brain 

connectivity, loss of network segregation between the default mode and 

executive networks emerged as a shared connectopathy common across four 

dimensions of psychopathology.  
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Building upon this work, in the second part of the dissertation, we 

designed, implemented, and deployed a new penalized statistical learning 

approach, Multi-Scale Network Regression (MSNR), to study brain network 

connectivity and a wide variety of phenotypes, beyond psychopathology. MSNR 

explicitly respects both edge- and community-level information by assuming a 

low rank and sparse structure, both encouraging less complex and more 

interpretably modeling. Capitalizing on a large neuroimaging cohort (n=1,051), 

we demonstrated that MSNR recapitulated interpretably and statistically 

significant associations between functional connectivity patterns with brain 

development, sex differences, and motion-related artifacts. Compared to 

common single-scale approaches, MSNR achieved a balance between prediction 

performance and model complexity, with improved interpretability. 

Together, integrating recent advances in multiple disciplines across 

machine learning, network science, developmental neuroscience, and psychiatry, 

this body of work fits into the broader context of computational psychiatry, where 

there is intense interest in the quest of delineating brain network patterns 

associated with psychopathology, among a diverse range of phenotypes.  
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CHAPTER 1  

 

General Introduction 
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Heterogeneity and Comorbidity in Neuropsychiatric Illness 

It is increasingly clear that psychiatric diagnostic labels do not “carve 

nature at its joint.” (Singh & Rose, 2009) In other words, clinical boundaries do 

not map cleanly onto the underlying neurobiology of mental disorders (B. T. R. 

Insel & Cuthbert, 2015). Two phenomena highlight such mismatch between 

existing diagnostic categories and distinct neurobiological abnormalities: 1) the 

marked levels of heterogeneity within an individual diagnosis (Hodgkinson et al., 

1987), and 2) co-morbidity across diagnoses (Jacobi et al., 2004). Accordingly, 

studies have demonstrated different “subtypes” within discrete psychiatric 

disorders, potentially explaining such heterogeneity (Clementz et al., 2016; 

Drysdale et al., 2016). Similarly, research has also reported common structural, 

functional, and genetic abnormalities across psychiatric syndromes, potentially 

explaining such co-morbidity (Goodkind et al., 2015; Lee et al., 2013; McTeague 

et al., 2017). This large body of literature gives prominence to the lack of direct 

correspondence between clinical diagnostic categories and the underlying 

pathophysiology. 

Neurodevelopmental Model of Psychopathology 

Another important observation regarding psychopathology is the fact that 

many major neuropsychiatric disorders first begin in adolescence, with as much 

as 75% of symptom onset occur before the age of 25 (Tomás Paus, Keshavan, & 
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Giedd, 2008). This early age of onset, together with insufficient therapeutic 

interventions, contributes to the tremendous lifetime burden of psychiatric illness, 

which routinely ranks as having the greatest impact on quality of life worldwide 

(Whiteford et al., 2013). Not coincidentally, throughout adolescence and early 

adulthood, the brain undergoes dramatic and complex changes (Cao, Huang, 

Peng, Dong, & He, 2016; Giedd & Rapoport, 2010; Tomáš Paus, 2005). These 

evidence indicates that abnormal brain maturation during critical phases of 

development may be associated with psychopathology (Bassett, Xia, & 

Satterthwaite, 2018; Rapoport, Giedd, & Gogtay, 2012). Despite the growing 

appreciation that abnormal neurodevelopment is involved in many psychiatric 

disorders, much is still unknown about how specific abnormalities of brain 

development are associated with psychopathology. 

These contexts have strongly motivated the goal to identify common 

circuit-level abnormalities, especially in the developing brain, that may give rise 

to the heterogeneous psychiatric symptoms across clinical diagnostic categories 

(Cuthbert & Insel, 2013). Broadly, this is supported by an initiative championed 

by the Research Domain Criteria (RDoC) of the National Institute of Mental 

Health (T. Insel et al., 2010). RDoC seeks to construct a biologically-grounded 

research framework for investigating psychiatric diseases. Critically, RDoC aims 

to “explore dimensions of functioning that span the full range of human behavior 

from normal to abnormal”, by integrating multimodal data, including genetic, 

imaging, and behavior (Casey, Oliveri, & Insel, 2014).  
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Network Neuroscience of Neurodevelopment and Disease 

Network neuroscience is a powerful approach to study the myriad brain 

systems implicated in psychopathology (Bassett & Sporns, 2017; Bassett et al., 

2018). Research in the past two decades in this emerging field has found 

converging patterns of normal neurodevelopment, using both functional 

connectivity (e.g. temporal correlation of blood-oxygen-level-dependent, or 

BOLD, signals) (Gu et al., 2015; Power, Fair, Schlaggar, & Petersen, 2010; 

Satterthwaite et al., 2013), and structural connectivity (e.g. estimation of white 

matter tract based fractional anisotropy) networks (Baum et al., 2016). A 

commonly studied network feature is the connectivity within- and between- 

community of the network, also called network modules (Sporns & Betzel, 2016). 

A network community is a collection of brain regions that are highly connected to 

each other, but form sparse connections with regions outside of the community. 

In other words, network community is internally dense, and externally sparse. 

During normative development, within-community connectivity tend to strengthen 

with age; whereas between-community connectivity tend to weaken with age 

(Baum et al., 2016; Power et al., 2010; Satterthwaite et al., 2013). This pattern of 

network reconfiguration suggests that the developing brain becomes more 

segregated and specialized during this critical period of plasticity. Given the 

neurodevelopmental model of psychopathology, this widely replicated network 

findings during development suggests that deviations from this normative 
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network could underlie much vulnerability to psychopathology (Bassett et al., 

2018; Casey et al., 2014). 

Indeed, prior studies using human imaging data and animal models have 

found brain network patterns do not neatly respect the clinical categories defined 

in the Diagnostic and Statistical Manual. For example, abnormalities of within- 

and between-community connectivity of the default mode network and executive 

networks have been implicated in a diverse range of psychopathology, including 

both internalizing symptoms (e.g., mood and anxiety) (Berman et al., 2011; 

Greicius, Supekar, Menon, & Dougherty, 2009; Skudlarski et al., 2010; Whitfield-

Gabrieli et al., 2009) and externalizing symptoms (e.g., attention deficit and 

misconduct behaviors) (Castellanos et al., 2008; Skudlarski et al., 2010; Uddin et 

al., 2010; von Rhein et al., 2016). In animal studies, local and long-range 

synchrony of neuronal activity, such as local field potential activity in the !-band, 

has been shown to exhibit common abnormal patterns in animal models of a 

wide range of neuropsychiatric disorders (Adhikari, Topiwala, & Gordon, 2010; 

Grayson et al., 2016; Hultman et al., 2016; Sigurdsson, Stark, Karayiorgou, 

Gogos, & Gordon, 2010; Uhlhaas & Singer, 2010). 

Despite the increasing recognition that brain network abnormalities do not 

map cleanly to current clinical categories, existing studies taking a trans-

diagnostic approach have been limited in several respects. First, most were 

restricted to one single dimension of psychopathology, missing the opportunity to 
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parse heterogeneity across the multiplicity of diagnoses (Satterthwaite et al., 

2015). Second, dimensions of psychopathology derived from traditional factor 

analyses only examined the clinical symptomatology. While such approach, 

including our prior work (Calkins et al., 2015; A N Kaczkurkin et al., 2017; 

Antonia N. Kaczkurkin et al., 2016; Shanmugan et al., 2016), exploited a diverse 

range of psychiatric symptoms, the lack of guidance by brain features limited its 

impact to delineate the underlying neurobiology. Third, the vast majority of past 

research efforts have focused on adults, unable to answer the prevailing 

hypothesis of psychopathology as disorders of brain development (T. R. Insel, 

2014). Finally, existing work that were able to study the critical window of brain 

development unfortunately suffered from small sample size, with dozens of 

participants. Modern multivariate analysis often requires much larger sample 

sizes to have the power to link high-dimensional brain patterns to complex 

behavioral and clinical measures (Bzdok & Yeo, 2017). 

Multi-Scale Brain networks 

Without a doubt, investigating how complex brain connectivity patterns are 

associated with neuropsychiatric illness has been an active area of research in 

the neuroscience community (Bassett & Sporns, 2017; Bzdok et al., 2016; 

Rubinov & Sporns, 2009). More broadly, the availability of large, open 

neuroimaging datasets as well as modern analytical tools and computational 

power have empowered scientists to uncover brain-phenotype relationships 
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across many domains, including development and aging, cognition, and 

neuropsychiatric illness (Biswal et al., 2010; Jernigan et al., 2016; Schumann et 

al., 2010; Van Essen et al., 2012).  

However, most of these studies used general purpose statistical tools, 

without explicitly taking advantage of or taking into account of features that are 

unique to brain connectivity networks. This gap between the abundance of brain 

network data and shortage of appropriate analytical tools remains largely unfilled 

today. The ongoing quest to extract meaningful brain-phenotype relationships 

using connectomic data demands a network-specific approach (Craddock, 

Tungaraza, & Milham, 2015; Varoquaux & Craddock, 2013). 

In modern network neuroscience, brain networks are represented by 

nodes, which denote the anatomical brain regions, and edges, which represent 

the connections between any pair of nodes (Rubinov & Sporns, 2009). As a 

stereotypical network can be made up of hundreds of nodes, and in turn, tens of 

thousands edges, one can investigate the properties of the network at different 

scales. At the micro-scale, one can investigate the individual edges (Craddock et 

al., 2015). At the meso-scale, assemble of edges form communities or modules, 

which are internal sparse and external dense structures that are thought to form 

the basis for specialized sub-units of information processing (Betzel, Medaglia, & 

Bassett, 2018). Finally, at the macro-level, networks can be studied using global 

summary statistics from classical graph theory measurement, including global 
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efficiency, characteristic path length, and clustering coefficient (Rubinov & 

Sporns, 2009). 

Histological tracing and brain imaging studies have extensively 

documented these scales of network architecture in the nervous systems of 

humans and other species. This large body of work includes C. elegans (Sohn, 

Choi, Ahn, Lee, & Jeong, 2011), Drosophila (Shih et al., 2015), mouse (Wang, 

Sporns, & Burkhalter, 2012), rat (Bota, Sporns, & Swanson, 2015), cat (de Reus 

& van den Heuvel, 2013), and macaque (Modha & Singh, 2010). Additionally, 

prior work has also demonstrated that brain network architecture present on 

these different scales are associated with development, aging, learning, memory, 

cognition, neurological, and psychiatric illness (Bassett et al., 2018; Betzel et al., 

2014; Braun et al., 2016; Bressler & Menon, 2010; Crossley et al., 2013; Fornito, 

Zalesky, & Breakspear, 2015; Grillon et al., 2013; Gu et al., 2015; Kernbach et 

al., 2018; Park & Friston, 2013; Power et al., 2010; Xia et al., 2018; Yu et al., 

2019). 

Single-Scale Approaches to Study Brain-Phenotype Relationships 

Common strategies for studying brain connectivity and phenotype 

relationship consider brain network features one individual scale at a time, either 

with edge, community, or global statistics alone. For example, researchers have 

found that patients with schizophrenia had elevated global efficiency, a macro-
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scale measure, in their functional brain networks compared to healthy controls 

(Lynall et al., 2010). While this approach has shown to be powerful in a great 

number of studies at demonstrating network abnormalities in neurological and 

psychiatric disorders, global network measures at the macro-scale inevitably fail 

to capture a large amount of information about complex brain systems at smaller 

scales. 

Alternatively, on the micro-scale, there exist strategies that focus on 

group-level comparisons of individual edges. It takes in the form of mass 

univariate analysis, where a statistical test, such as a linear model, is applied to 

every edge (Craddock et al., 2015; Varoquaux & Craddock, 2013). While this 

procedure is methodologically easy to implement, a few drawbacks make it less 

practical. Chief among these caveats is the need to correct for a larger number of 

multiple comparisons, which ultimately dampens power for discovering potentially 

weak relationships between individual edge and phenotypes (Storey, 2002). In 

the process of reducing type I error, this approach can be very conservative and 

result in high type II error rates. To achieve balance between detection power 

and false discovery, alternative edge-based methods have been developed, such 

as the network based statistic (Zalesky, Fornito, & Bullmore, 2010) and 

multivariate distance matrix regression (Zapala & Schork, 2012). While these 

methods largely address the need for accounting for multiple comparison testing 

on each edge through family wise error rate correction procedures similar to 

those employed by conventional fMRI studies, they nonetheless focus 
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exclusively on the microscale of edges while ignoring innate data structures in 

the brain network, producing edge-level results that are difficult to interpret. With 

a select attention on each element of the adjacency matrix without appreciation 

of information present at a larger scale, edge-only approaches cannot see the 

forest for the trees. 

Another equally problematic caveat of the edge-based approach is that it 

requires first vectorizing the connectivity matrix. This manipulation of the data 

structure transforms the original symmetric adjacency matrices into a wide 

feature table, where each column represents the edge strength across subjects. 

This unavoidably disrupts structures in the data, most notably block structures 

that represent meso-scale network features. To explicitly respect this community-

level network information, one could calculate the within- and between- 

community connectivity as dependent variables in the linear models similar to the 

mass univariate analysis using edges (Betzel et al., 2014; Crossley et al., 2013; 

Gu et al., 2015). However, analogous to a high-order smoothing operation, 

extracting the mean connectivity of community pairs mixes disparate signals and 

also misses microscale information. While optimized for interpretability and low 

dimensionality in an attempt to improve signal to noise ratio, the community-

based approach could be throwing the baby (signal) out with the bathwater 

(noise). 
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All told, single-scale approaches to study connectome-phenotype 

relationship, whether on a microscale (edge) or mesoscale (community), present 

with their own unique set of challenges of statistical power and interpretability. 

Thus, a regression method that integrates information across multiple scales with 

proper constraints could potentially achieve the best from both worlds. Indeed, 

recent theoretical and experimental studies have described many complex 

systems, including the financial system (Fenn et al., 2011), protein structure 

(Delmotte, Tate, Yaliraki, & Barahona, 2011), physical particles (Bassett, Owens, 

Porter, Manning, & Daniels, 2015), and the brain (Bassett & Siebenhühner, 2013; 

Betzel & Bassett, 2017) from a multi-scale perspective. However, this body of 

literature mostly concerns itself with network characterization and multi-scale 

community detection, rather than how to extract relationship between brain 

network and phenotypes in a multi-scale manner. 

In this dissertation, the overall arching goal is to study complex 

connectivity patterns in functional brain networks that are linked to a diverse 

range of measurement, in particular, psychopathology. In both studies that follow, 

we applied advanced machine learning techniques to delineate multivariate 

patterns of functional connectivity.  

In Chapter 2, we set out to map out linked dimensions of psychopathology 

that are highly associated with patterns of functional connectivity. Specifically, to 

delineate brain-guided dimensions that cut across existing diagnostic categories, 
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we applied sparse canonical correlational analysis (sCCA) (Witten, Tibshirani, & 

Hastie, 2009) to the Philadelphia Neurodevelopmental Cohort (PNC) 

(Satterthwaite et al., 2014), a large cohort of youth with multimodal imaging and 

item-wise psychiatric symptoms. We discovered four linked dimensions of 

psychopathology and brain connectivity patterns, namely mood, psychosis, fear, 

and externalizing behavior. These brain-guided psychopathological dimensions 

cross traditional categorical boundaries while concurring with clinical experience. 

Each dimension exhibited unique brain connectivity patterns; however, across all 

psychopathology, loss of normative segregation between the default mode and 

executive networks emerged as a common feature of connectivity dysfunction. 

In Chapter 3, we introduce a new regression method specifically designed 

to analyze the associations between high-dimensional connectomic data and 

phenotypes of interest, which we refer to as Multi-Scale Network Regression 

(MSNR). Specifically, we designed a penalized multivariate approach to explicitly 

exploit both edge and community level information to extract brain-phenotype 

relationships. By constraining a low rank and sparse structure on edges and 

community level information, respectively, MSNR encourages less complex and 

more interpretable modeling while achieves higher out-of-sample prediction 

performance and statistical significance via permutation tests. We applied MSNR 

to PNC and found that MSNR recapitulated known functional brain connectivity 

patterns in association with age, sex, and in-scanner motion. In a head-to-head 

comparison with common single-scale approaches that consider either edges or 
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community connectivity alone, MSNR achieved a balance between out-of-sample 

prediction and model complexity, with improved interpretability.
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Appendix Figure 5 
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Appendix Figure 6 

 

 

 

 

 

 

Prepared originally for a now funded R01 grant by Desmond Oathes, Danielle Bassett, 
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